En d'autres termes, une section est un inverse à droite, et une rétraction est un inverse à gauche (ce sont deux notions duales).
Le concept au sens des catégories de ces notions est particulièrement important en algèbre homologique, et est étroitement lié à la notion de section d'un fibré en topologie.
Toute section est un monomorphisme et toute rétraction est un épimorphisme. Elles sont respectivement appelées[1]split mono et split epi. Même dans le cas de la catégorie des ensembles, il n'y a nullement unicité, par exemple, si f est une surjection mais pas une bijection, on peut construire (en admettant l'axiome du choix) plusieurs sections de f.
Soit et deux catégories et un foncteur covariant de dans . Alors, si est une section (resp. une rétraction) de , la flèche est une section (resp. une rétraction) de [2].