Soit , l'algèbre des quaternions sur l'anneau ℤ des entiers relatifs. On définit les
quaternions de Hurwitz — aussi appelés entiers de Hurwitz — comme suit :
Ils forment un ordre maximal dans l'algèbre des quaternions sur ℚ.
Propriétés
Les quaternions de Hurwitz forment un anneau unitaire, intègre mais non commutatif.
Il existe 24 entiers de Hurwitz de norme 1 : 8 formés par ±1, ±i, ±j, ±k et 16 formés par (±1 ± i ± j ± k)/2.
Tout élément a de l'anneau est associé (à gauche ou à droite, au choix) à (au moins) un élément à composantes entières, c'est-à-dire que a est le produit d'un tel élément par l'un de ces 24 éléments de norme 1. En effet, si les quatre composantes de a sont des demi-entiers, il existe ω de la forme (±1 ± i ± j ± k)/2 tel que les composantes de a – ω soient des entiers pairs, et celles de ωa = ω(a – ω) + 1 sont alors entières.
Un anneau commutatif intègre A est dit euclidien s'il est muni d'un « préstathme euclidien », c'est-à-dire d'une application v de A dans ℕ vérifiant que pour deux éléments non nuls quelconques a, b de A tels que b ne divise pas a, il existe des éléments q, r de A tels que a = qb + r et v(r) < v(b), et cette définition se latéralise pour des anneaux non commutatifs[2]. En ce sens, l'anneau des entiers de Hurwitz est euclidien à gauche et à droite avec, comme préstathme, la norme. Autrement dit, pour la division euclidienne à gauche : si a et b sont des entiers de Hurwitz, avec b non nul, il existe au moins un couple (q, r) d'entiers de Hurwitz tel que a = qb + r avec ║r║ < ║b║. En effet, il suffit de poser r = a – qb après avoir choisi pour q un entier de Hurwitz tel que ║ab−1 – q║ < 1, or un tel q existe toujours[3].
on peut définir un algorithme d'Euclide à gauche dans l'anneau des entiers de Hurwitz, et trouver ainsi un plus grand commun diviseur (à droite)[3] de a et b (noté pgcd(a, b)), c'est-à-dire ayant la plus grande norme, et des entiers de Hurwitz u et v tels que pgcd(a, b) = ua + vb.
On a bien sûr les analogues en échangeant gauche et droite, par un raisonnement identique ou par conjugaison.
↑(en) Hans-Heinrich Brungs, « Left Euclidean rings », Pacific Journal of Mathematics, vol. 45, no 1, , p. 27-33 (DOI10.2140/pjm.1973.45.27, lire en ligne).