La fermeture des feuilles de Mimosa pudica après contact dépend de signaux électriques.
En botanique, la perception par les plantes désigne la capacité des plantes à détecter certaines modifications de leur environnement, et à ajuster leur morphologie, leur physiologie et leur phénotype en conséquence[1]. Les plantes, plus ou moins sensibles selon l'espèce, disposent de divers moyens pour détecter ces stimuli, sources d'une variété de réponses ou de comportements en réaction.
Historiquement, des plantes dites héliotropes (suivant le parcours du soleil) ou sensitives (Mimosa pudica notamment)[2],[3], qui intriguent l'Homme depuis des siècles, ont servi de modèles d'étude.
L'un des pionniers de ce domaine fut le scientifique bengali Jagadish Chandra Bose, qui à partir de 1901 a dédié sa seconde partie de carrière scientifique à la physiologie végétale et en particulier à l'électrophysiologie chez les végétaux supérieurs. Il est souvent oublié[4], mais il y a plus d'un siècle, il a étudié la réponse végétale à divers stimuli, dont aux ondes électromagnétiques (lumière mais aussi micro-ondes)
Il a aussi étudié le sainfoin oscillant (Desmodium gyrans depuis renommé Codariocalyx motorius) chez lequel on a ensuite montré que ses feuilles peut se mouvoir à la suite d'un stimulus sonore (certaines ondes sonores)[5],[6],[7],[8]. Bose est le premier à montrer que les plantes disposent d'un mécanisme nerveux, bien que très différent de celui des animaux.
Dans le contexte de défense contre les herbivores, les plantes peuvent percevoir une attaque (d'insecte par exemple) et d'induire, plus ou moins rapidement, des défenses appropriées.
Ainsi, le maïs peut-il détecter des éliciteur dans les sécrétions orales de l'insecte qui l'attaque, comme la voliticine (N-17-hydroxylinolenoyl-l-glutamine) dans la salive de Spodoptera exigua[11]. En mangeant une feuille, l'insecte ingère des acides gras présents dans les membranes végétales, dont l'acide linolénique. Dans l'intestin, l'acide linolénique se lie à la glutamine, un acide aminé, pour former la volicitine[12]. Celle-ci est ensuite incorporée dans la salive de l'insecte, puis relâchée quand il mange une feuille. La plante détecte en retour la volicitine, signal qu'elle est en train de se faire manger. Cela entraîne une augmentation des niveaux de jasmonate, impliqué dans la défense contre les herbivores, et des sesquiterpènes volatils, qui attirent des guêpes parasitoïdes. Comme la volicitine est un composé essentiel pour l'insecte, il n'y a pas de pression de sélection pour l'éliminer de sa salive, même si cela lui permettrait de ne plus se faire reconnaître par la plante.
Des éliciteurs présents dans les œufs d'insectes déposés sur la feuille ou pondus dans une tige, etc. peuvent aussi entraîner une réponse chez la plante. En effet, ceux-ci représentent une menace puisqu'ils vont se développer et se nourrir de la plante. Mais contrairement à l'attaque d'un herbivore, qui active la voie du jasmonate, les œufs pondus sur les feuilles d'Arabidopsis thaliana activent la voie de l'acide salicylique[13]. C'est la même voie qui est déclenchée par les bactéries et certains microchampignons pathogènes. Ces deux voies de signalisation sont antagonistes, donc l'induction d'acide salicylique chez la feuille va faire baisser son niveau de jasmonate et donc supprimer les défenses de la plante face aux herbivores en devenir.
↑Volkov, A. G., Foster, J. C., Ashby, T. A., Walker, R. K., Johnson, J. A., & Markin, V. S. (2010). Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant, cell & environment, 33(2), 163-173.
↑Volkov, A. G., Foster, J. C., & Markin, V. S. (2010). Signal transduction in Mimosa pudica: biologically closed electrical circuits. Plant, cell & environment, 33(5), 816-827.
↑(en) Peter V. Minorsky, « American racism and the lost legacy of Sir Jagadis Chandra Bose, the father of plant neurobiology », Plant Signaling & Behavior, , p. 1818030 (ISSN1559-2324, DOI10.1080/15592324.2020.1818030, lire en ligne, consulté le )
↑« Ça vaut le coup d'œil », Science et vie junior, no 332, , p. 26
↑Francis Hallé, Éliane Patriarca, Atlas de botanique poétique, Arthaud, , 128 p.
↑Variation dans la résistance aux pathogènes (vibrations au niveau des parties végétatives) ou dans la concentration en sucre du nectar de fleurs (vibrations au niveau des pétales). Cf (en) I. Khait, U. Obolski, Y. Yovel, L. Hadany, « Sound perception in plants », Semin Cell Dev Biol, vol. 92, no 1, , p. 134-138 (DOI10.1016/j.semcdb.2019.03.006).
↑(en) Nathan W. Bailey, Kasey D. Fowler-Finn, Darren Rebar et Rafael L. Rodríguez, « Green symphonies or wind in the willows? Testing acoustic communication in plants », Oxford Journals - Life Sciences - Behavioral Ecology, vol. 24, no 4, , p. 797-798 (DOI10.1093/beheco/ars228).
↑(en) Schmelz EA, Alborn HT, Tumlinson JH, « Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect-induced volatile emission in Zea mays », Physiologia plantarum, vol. 117, no 3, , p. 403-412 (DOI10.1034/j.1399-3054.2003.00054.x).
↑(en) Aboshi T, Yoshinaga N, Noge K, Nishida R, Mori N, « Efficient incorporation of unsaturated fatty acids into volicitin-related compounds in Spodoptera litura (Lepidoptera: Noctuidae) », Bioscience, Biotechnology, and Biochemistry, vol. 71, no 2, , p. 607-610 (DOI10.1271/bbb.60546).
↑(en) Bruessow F, Gouhier-Darimont C, Buchala A, Metraux JP, Reymond P., « Insect eggs suppress plant defence against chewing herbivores », The Plant Journal, vol. 62, , p. 876-885.