La neusis (du grec ancien νεῦσις venant de νεύειν neuein « pencher vers »; pluriel : νεύσεις neuseis) est une méthode de construction géométrique utilisée dans l'Antiquité par les mathématiciens grecs dans des cas où les constructions à la règle et au compas étaient impossibles.
Construction géométrique
La construction par neusis consiste à placer un segment de longueur fixée a entre deux courbes données l et m, de telle sorte que la droite support du segment passe par un point fixé P.
Ces constructions peuvent se faire à l’aide d’une règle graduée, dite règle à neusis : on la fait glisser et pivoter en restant au contact d'un axe fixé en P ; l'origine de la graduation sur la règle (marquée en jaune sur la figure) glisse sur la courbe l jusqu'à ce que la graduation à distance a (marquée en bleu) soit sur la courbe m.
P est le pôle dela neusis, l est la directrice, ou courbe guide, et m est la courbe cible. La longueur a s'appelle le diastème (διάστημα; grec ancien pour « distance »).
L'historien des mathématiques Thomas Heath a suggéré que Œnopide de Chios (vers 440 BC) avait été le premier à considérer les constructions à la règle et au compas comme supérieures à celles par neusis. Ce jugement aurait été diffusé par Hippocrate de Chios (vers 430 BC), qui est le premier, à notre connaissance, à avoir écrit un manuel de géométrie organisé de manière systématique. Un siècle plus tard, Euclide évita lui aussi la neusis dans ses Éléments, à l'immense influence.
Une attaque plus philosophique du neusis se produisit lorsque l'idéalisme de Platon commença à gagner du terrain, vers 350 BC. Une hiérarchie de trois classes de constructions géométriques se développa alors ; en descendant de l'« abstrait et noble » vers le « mécanique et terre-à-terre », on trouvait :
les autres sortes de constructions, par exemple le neusis.
La neusis devint alors une solution utilisée en dernier recours, quand des constructions plus respectables avaient échoué. Pappus (vers 325 AD) considérait l’utilisation de la neusis, quand d’autres constructions existaient, comme « une erreur peu excusable ».
(de) R. Boeker, 'Neusis', dans Paulys Realencyclopädie der Classischen Altertumswissenschaft, G. Wissowa red. (1894–), Supplément 9 (1962) 415–461.
(en) Thomas Heath, A History of Greek Mathematics (2 volumes), Oxford, 1921.
(de) H. G. Zeuthen, Die Lehre von den Kegelschnitten im Altertum [« La théorie des sections coniques dans l'Antiquité »] (Copenhagen 1886 ; réimpression Hildesheim 1966).