La Femme qui faillit être lynchée
|
Read other articles:
本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 �...
Caja de Ahorros del MediterráneoTrade nameCaja MediterráneoNative nameCaja de Ahorros del MediterráneoCompany typeSavings bankIndustryFinancial servicesFoundedAlicante, Spain (March 23, 1992 (1992-03-23))DefunctDecember 2011 (2011-12)FateAcquired by Banco Sabadell, S.A.SuccessorSabadellCAMHeadquartersAlicante, SpainNumber of locations1,157 branchesKey peopleModesto Crespo Martínez, Chairman (2009-2011), Roberto López Abad, CEO (2001-2010), Agustín Llorca Ramíre...
Casper Casper yang sedang berada di dalam bus. Nama lahir Morse Nama lain Cassie Spesies Felis domesticus Jenis kelamin Jantan Lahir 1997 (umur 17) Inggris Mati 14 Januari 2010 (umur 13) Plymouth, Devon, Inggris Asal negara Inggris Tahun aktif 2009–14 Januari 2010 Dikenal karena Seekor kucing komuter Pemilik Susan Finden Casper (lahir 1997 - meninggal 14 Januari 2010 pada umur 13 tahun)[1][2] adalah seekor kucing domestik jantan yang menarik perhatian media di s...
American college basketball season 1938–39 Illinois Fighting Illini men's basketballConferenceBig Ten ConferenceRecord14–5 (8-4 Big Ten)Head coachDouglas MillsAssistant coaches Howie Braun Wally RoettgerDavid M. Bullock (Trainer)[1] CaptainTom NisbetHome arenaHuff HallSeasons← 1937–381939–40 → 1938–39 Big Ten Conference men's basketball standings vte Conf Overall Team W L PCT W L PCT Ohio State 10 – 2 ....
Untuk fenomena psikologis, lihat Déjà vu. Deja VuAlbum studio karya Indah Dewi PertiwiDirilis14 Januari 2015GenrePopDurasi44:33LabelKeci MusicMusic Factory IndonesiaActplusProduserAhmad Dhani, Charly van Houten, Yon Koeswoyo, Sandy Canester, Piyu, TohpatiKronologi Indah Dewi Pertiwi Teman Ter-Indah(2012)Teman Ter-Indah2012 Deja Vu (2015) Deja Vu merupakan album musik ketiga karya Indah Dewi Pertiwi. Dirilis pada tahun 2015. Album ini akan membawanya ke nuansa 90-an dan bergenre mellow, ...
Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...
此條目之中立性有争议。其內容、語調可能帶有明顯的個人觀點或地方色彩。 (2011年6月)加上此模板的編輯者需在討論頁說明此文中立性有爭議的原因,以便讓各編輯者討論和改善。在編輯之前請務必察看讨论页。 格奥尔基·季米特洛夫保加利亚共产党中央委员会总书记任期1948年8月—1949年7月2日前任自己(第一书记)继任维尔科·契尔文科夫保加利亚共产党中央委员会第一�...
1993 film Black HarvestFilm posterDirected byAnders RefnWritten byAnders RefnStarringOle ErnstCinematographyJan WeinckeDistributed byNordisk FilmRelease date 5 November 1993 (1993-11-05) Running time120 minutesCountryDenmarkLanguageDanish Black Harvest (Danish: Sort høst) is a 1993 Danish drama film directed by Anders Refn.[1] The film was selected as the Danish entry for the Best Foreign Language Film at the 66th Academy Awards, but was not accepted as a nominee.[...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2017) يو جي سي 4879 صورة من مقراب هابل لمجرة UGC 4879 جزء من المجموعة المحلية الكوكبة الدب الأكبر رمز الفهرس PGC 26142 (فهرس المجرات الرئيسية)[1]UGC 4879 (فهرس أوبسالا ال...
State in Malaysia This article should specify the language of its non-English content, using {{lang}}, {{transliteration}} for transliterated languages, and {{IPA}} for phonetic transcriptions, with an appropriate ISO 639 code. Wikipedia's multilingual support templates may also be used. See why. (June 2021) StatePahang Paha, Pahaeng, PahaqStatePahang Darul Makmurڤهڠ دار المعمورOther transcription(s) •...
For Article 99 of the United Nations Charter, see Chapter XV of the United Nations Charter § Article 99. 1992 film by Howard Deutch Article 99Home Video release posterDirected byHoward DeutchWritten byRon CutlerProduced by Michael Gruskoff Michael I. Levy Starring Ray Liotta Kiefer Sutherland Forest Whitaker Lea Thompson John Mahoney John C. McGinley Keith David Kathy Baker CinematographyRichard BowenEdited by Richard Halsey Colleen Halsey Music byDanny ElfmanDistributed byOrion Picture...
Dominic IorfaIorfa con la maglia del Wolverhampton nel 2015.Nazionalità Inghilterra Altezza193 cm Peso78 kg Calcio RuoloDifensore Squadra Sheffield Weds CarrieraGiovanili 2006-2010 Southend Utd2010-2013 Wolverhampton Squadre di club1 2013-2014 Wolverhampton0 (0)2014→ Shrewsbury Town7 (0)2014-2017 Wolverhampton84 (0)2017-2018→ Ipswich Town23 (1)2018-2019 Wolverhampton0 (0)2019- Sheffield Weds114 (5)[1] Nazionale 2013 Inghilterra ...
This article was nominated for deletion. The discussion was closed on 19 March 2024 with a consensus to merge the content into the article Misuse of Drugs Act 1971. If you find that such action has not been taken promptly, please consider assisting in the merger instead of re-nominating the article for deletion. To discuss the merger, please use the destination article's talk page. (March 2024) United Kingdom legal classification This article's tone or style may not reflect the encyclopedic t...
Radio station in Williamsburg, VirginiaWRRW-LPWilliamsburg, VirginiaBroadcast areaWilliamsburg, VirginiaFrequency102.5 MHzBrandingRevolutionary Radio WRRWProgrammingFormatDefunctOwnershipOwnerThe Popular Assembly of New Horizons 300 and His SuccessorsHistoryFirst air date2004Former call signsWYOU-LP (2004–2008)WRRW-LP (2008–Present)Call sign meaningW Revolutionary Radio WilliamsburgTechnical information[1]Licensing authorityFCCFacility ID125974ClassL1Power55 wattsHAAT40.3 metersTr...
Rugby union team from various Pacific island nations Rugby teamMoana PasifikaUnionNew Zealand RugbyFounded2020; 4 years ago (2020)Ground(s)Mt Smart Stadium (Capacity: 30,000)Coach(es)Tana UmagaCaptain(s)James LayLeague(s)Super Rugby Pacific202411th overall Team kit Official websitemoanapasifika.co.nz Moana Pasifika is a rugby union team made up of players from various Pacific Island nations as well as New Zealand or Australian born players of Pasifika heritage, including Fi...
Questa voce o sezione sull'argomento economia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. La crescita economica, nell'economia, è un fenomeno o contesto macroeconomico, relativo soprattutto ai sistemi economici moderni, caratterizzato da un incremento nel medio-lungo termine dello sviluppo della soci...
غوريتسا (ماغنيسيا) تقسيم إداري البلد اليونان [1] خصائص جغرافية إحداثيات 39°34′54″N 20°55′08″E / 39.58167°N 20.91883°E / 39.58167; 20.91883 الارتفاع 560 متر السكان التعداد السكاني 258 (resident population of Greece) (2021)292 (resident population of Greece) (2001)275 (resident population of Greece) (1991)289 (resident population of Greece) (201...
Radio station in Kapuskasing, Ontario CKAP-FMKapuskasing, OntarioFrequency100.9 MHz (FM)Branding100.9 Moose FMProgrammingFormatAdult contemporaryOwnershipOwnerVista Broadcast GroupHistoryFirst air date1965Former frequencies580 kHz (AM) (1965–2001)Technical informationClassBERP12 kWshorizontal polarization onlyHAAT83 meters (272 ft)LinksWebcastListen LiveWebsitemykapuskasingnow.com CKHT-FMHearst, OntarioFrequency94.5 MHz (FM)ProgrammingFormatAdult contemporaryOwnershipOwnerVista Broadca...
Questa voce o sezione sull'argomento governo non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Ministro di Stato del Principato di Monaco Didier Guillaume, attuale Ministro di Stato monegasco Stato Monaco OrganizzazioneConsiglio di governo del Principato di Monaco TipoCapo del governo In caricaPierre Dartout (Indipendente) da2 settembre 2024 Istituito...
Theorem relating a group with the image and kernel of a homomorphism In abstract algebra, the fundamental theorem on homomorphisms, also known as the fundamental homomorphism theorem, or the first isomorphism theorem, relates the structure of two objects between which a homomorphism is given, and of the kernel and image of the homomorphism. The homomorphism theorem is used to prove the isomorphism theorems. Group-theoretic version Diagram of the fundamental theorem on homomorphisms, where f i...