John W. Morgan, Trees and hyperbolic geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, CA, 1986), 590–597, Amer. Math. Soc., Providence, RI, 1987. lien Math Reviews
Quantum fields and strings: a course for mathematicians. Vol. 1, 2. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997. Edited by Pierre Deligne, Pavel Etingof, Daniel S. Freed, Lisa Jeffrey, David Kazhdan, John W. Morgan, David R. Morrison et Edward Witten. American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 1999. Vol. 1: xxii+723 pp.; Vol. 2: pp. i--xxiv and 727–1501. (ISBN0-8218-1198-3), 81-06 (81T30 81Txx)
Phillip A. Griffiths, John W. Morgan, "Rational homotopy theory and differential forms", Progress in Mathematics, vol. 16, Birkhäuser, Boston, MA, 1981. (ISBN3-7643-3041-4)[4]
John W. Morgan, Tomasz Mrowka, Daniel Ruberman, "The L2-moduli space and a vanishing theorem for Donaldson polynomial invariants", Monographs in Geometry and Topology, II. International Press, Cambridge, MA, 1994. (ISBN1-57146-006-3)
John W. Morgan, "The Seiberg-Witten equations and applications to the topology of smooth four-manifolds", Mathematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996. (ISBN0-691-02597-5)
John W. Morgan et Frederick Tsz-Ho Fong, Ricci Flow and Geometrization of 3-Manifolds, coll. « University Lecture Series », , 150 p. (ISBN978-0-8218-4963-7, lire en ligne)
↑Morgan, Szabo, Taubes: A product formula for the Seiberg-Witten Invariants and the generalized Thom Conjecture, Journal of Differential Geometry, vol. 44, 1996, pp 706–788
↑Chen, Kuo-Tsai, « Review: Rational homotopy theory and differential forms, by P. A. Griffiths and J. W. Morgan », Bull. Amer. Math. Soc. (N.S.), vol. 8, no 3, , p. 496–498 (DOI10.1090/s0273-0979-1983-15135-2, lire en ligne)