Dualité (géométrie projective)

La dualité projective, découverte par Jean-Victor Poncelet, est une généralisation de l'analogie entre le fait que par deux points distincts passe une droite et une seule, et le fait que deux droites distinctes se coupent en un point et un seul (à condition de se placer en géométrie projective, de sorte que deux droites parallèles se rencontrent en un point à l'infini). La dualité projective affirme que tout théorème de la géométrie projective du plan (donc ne faisant pas appel aux notions métriques de distances et d'angles, ni aux notions affines de parallélisme et de proportion), comme le théorème de Desargues ou le théorème de Pappus, donne naissance à un autre théorème, appelé théorème dual, obtenu en échangeant les mots de points et de droites dans son énoncé.

Dualité dans un plan projectif

Définition

Contrairement à la géométrie plane classique où les droites sont des ensembles de points, il vaut mieux considérer en géométrie projective que le plan projectif P est constitué d'un ensemble de points , d'un ensemble de droites , et d'une relation indiquant quels points sont sur quelle droite (ou quelles droites passent par quel point). Pour bien comprendre que c'est cette relation qui est importante et non la nature des points et des droites, le mathématicien David Hilbert aurait dit : « Il faut toujours pouvoir dire "table", "chaise" et "bock de bière" à la place de "point", "droite" et "plan" »[1].

Nous considérons dans un premier temps que le plan projectif P est défini de manière axiomatique ; on constate alors que l'on obtient un autre plan projectif en considérant l'objet P* dont les « points » sont les droites de P et les « droites » sont les points de P, une droite de P* (qui est un point M de P) passant par un « point » de P* (qui est une droite D de P) lorsque D passe par M.

Un point et une droite de P Un point et une droite de P*, dont quatre points sont dessinés

Pour simplifier, au lieu de travailler sur deux plans différents, P et P*, on peut se contenter de travailler sur un seul plan projectif P.

Une corrélation est une transformation des points du plan en droites et des droites du plan en points et qui respecte l'incidence. Une polarité est une corrélation involutive, c’est-à-dire que la corrélation de la corrélation est la transformation identique.

Exemples

À toute configuration de points et de droites dans P correspond alors dans P* une configuration duale obtenue en échangeant les points et les droites, et de même, à tout théorème dans P, correspond un théorème dual.

Configuration dans P Même configuration vue dans P*
Deux points A et B et la droite passant par ces deux points, notée (AB) Deux droites A et B et leur point d'intersection, noté AB (la notation (AB) paraîtrait trop étrange)
Trois points alignés Trois droites concourantes
Configuration de Ceva : Un triangle de sommets A,B,C et trois céviennes D,E,F concourantes en M
Configuration de Ménélaus : Un triangle de A,B,C et une ménélienne M rencontrant les côtés en D,E,F
Configuration de Desargues : deux triangles de sommets respectifs A,B,C et A',B',C', et de côtés D,E,F et D',E',F' (D = (BC), E = (CA) etc), P,Q,R les points DD', EE', FF', U,V,W les droites (AA'), (BB'), (CC').

Le théorème de Desargues affirme que P,Q,R sont alignés ssi U,V,W sont concourantes.

Configuration de Desargues (qui est donc « auto-duale ») : deux triangles de côtés respectifs A,B,C et A',B',C', et de sommets D,E,F et D',E',F' (D = BC, E = CA etc), P,Q,R les droites (DD'), (EE'), (FF'), U,V,W les points(AA'), (BB'), (CC').

Le théorème de Desargues affirme que P,Q,R sont concourantes ssi U,V,W sont alignés.

Configuration de Pappus :

Deux triplets de points alignés A,B,C et A',B',C', P = (B'C' ∩ (BC'), Q = (CA'AC') R = (BA'AB') ; le théorème de Pappus affirme que P,Q,R sont alignés.

Configuration de « Copappus », ou Pappus-dual : Deux triplets de droites concourantes A,B,C et A',B',C', P = (BC', BC'), Q = (CA', AC') R = (BA', AB') ; le théorème de « Copappus » affirme que P,Q,R sont concourantes. (voir figure ci-dessous où on voit que cette configuration est finalement « auto-duale » également)

Remarque : Si l'on convient d'identifier une droite avec l'ensemble de ses points, il faut, pour que la dualité soit parfaite, identifier un point avec l'ensemble des droites qui passent par ce point, autrement dit, identifier un faisceau de droites avec son pôle.

Dualité et birapport

Dualités, corrélations et polarités

Considérons les homographies de P sur P* ; ce sont des bijections f de sur qui transforment une droite de P en une « droite » de P* ; on peut donc les prolonger en une bijection, toujours notée f, de , qui transforme un point en une droite et réciproquement, et qui vérifie : .

De telles applications sont appelées des dualités ou corrélations ; lorsqu'elles sont involutives (), elles sont appelées des polarités ou autrefois « transformations par polaires réciproques ». Dans ce dernier cas, l'image d'un point est appelé la polaire de ce point, et l'image d'une droite, son pôle.

D'après le théorème fondamental de la géométrie projective, dans le cas réel toute dualité provient d'une homographie (dans le cas général, d'une semi-homographie).

Théorème d'incidence et de réciprocité

Il y a deux théorèmes importants qui découlent des définitions.

Théorème — Si le point A est incident à la droite (d), alors le point dual de (d) est incident à la droite duale de A.

Ce théorème est plus puissant que le précédent :

Théorème de réciprocité polaire — Si le point A est sur la polaire du point B, alors B est sur la polaire de A.

On sait qu'il existe une bijection entre les points de P et les droites vectorielles d'un espace vectoriel E de dimension 3, et une bijection entre les droites de P et les plans vectoriels de E (un point appartenant à une droite si la droite vectorielle est incluse dans le plan vectoriel).

L'orthogonalité entre E et son dual E*, ensemble des formes linéaires sur E, qui à tout sous-espace vectoriel de E associe un sous-espace vectoriel de E* induit une bijection entre les plans vectoriels de E et les droites vectorielles de E*, et entre les droites vectorielles de E et les plans vectoriels de E*, qui inverse les inclusions.

Il existe donc une bijection canonique entre les points et droites de P* et les droites et plans vectoriels de E* qui respecte les incidences : si un plan projectif P est associé à un espace vectoriel E, le plan dual P* est bien associé à l'espace vectoriel dual E*.

Duale d'une homographie

Une homographie f du plan projectif dans lui-même est une bijection dans l'ensemble des points de P, qui induit une bijection f* dans l'ensemble des droites de P, qui est l'ensemble des « points » de P* : f* est l'homographie duale de f (remarquons que  !) ; on vérifie que si f provient d'un automorphisme de , alors f* provient de l'automorphisme de dual de , appelé plus souvent automorphisme transposé de f.

Utilisation des coordonnées

Rapportons le plan projectif P à un repère projectif , qui est associé à une base de l'espace vectoriel E ; considérons l'isomorphisme entre E et son dual qui transforme B en la base duale , lequel induit une dualité entre P et P* ; à un point M de P est associé un vecteur défini à une constante multiplicative près de coordonnées dans B (les coordonnées homogènes de M dans ), auquel est associé par la forme linéaire dont le noyau est le plan d'équation  ;

cette équation est l'équation homogène de la droite d image de M par la dualité ; l'on vérifie qu'inversement, l'image de d est M, ce qui fait que cette dualité est une polarité, définie par :

point de coordonnées homogènes ↔ droite d'équation homogène :

le repère dual de , associé à B* est formé des droites d'équation respectives : , donc . Remarquons qu'un point et sa droite polaire ont mêmes coordonnées homogènes, l'un dans , l'autre dans .

Dualité associée à une forme bilinéaire, polarité associée à une forme quadratique ou à une conique

Soit f une dualité de P vers P* provenant d'un isomorphisme de E vers E*. Il est associé à ce dernier une forme bilinéaire non dégénérée sur E, définie par (noté par le crochet de dualité ) et cette correspondance est bijective ; la dualité f est dite associée à la forme bilinéaire (définie à une constante multiplicative près). La matrice de l'isomorphisme dans une base B et la base duale B* est celle de la forme bilinéaire dans B.

La dualité f est une polarité ssi pour tous points M et  : , ce qui se traduit sur la forme bilinéaire par : pour tous vecteurs et  :  ; on montre que cette dernière condition équivaut à ce que soit symétrique ou antisymétrique (si le corps est de caractéristique différente de 2).

Toute forme quadratique sur E engendre une forme bilinéaire symétrique, laquelle en engendre une polarité dans P, qui est dite associée à q. Le cône isotrope de q (défini par ) est un cône du second degré de E lequel engendre une conique projective (C) dans P. On dit alors par abus que la polarité f associée à q est la polarité par rapport à (C). Remarquons qu'on a alors : .

Polarité par rapport à un cercle dans le plan euclidien

Considérons un cercle (C) de centre O de rayon a d'un plan euclidien rapporté à un repère orthonormé  ; P est le complété projectif de et E son enveloppe vectorielle, rapportée à .

L'équation cartésienne du cercle est  ; la polarité f par rapport à (C) est donc associée à la forme quadratique de E et l'isomorphisme de E sur E* est celui qui envoie sur

Du point de vue du plan affine , la polarité f a une définition très simple : au point de coordonnées correspond la droite d’équation et l’image d’un point à l’infini est la droite passant par et perpendiculaire à la direction du point.

Et on a les définitions géométriques suivantes : la polaire (droite image par la polarité) d’un point par rapport au cercle (C) est le lieu des conjugués harmoniques du point par rapport au cercle, lieu défini par la relation  ; c’est la droite orthogonale à la droite passant par l’inverse de par rapport à (C) ; c’est aussi l’axe radical du cercle (C) et du cercle de diamètre  ; quand est extérieur à (C), c’est la droite qui joint les points de contact des tangentes issues de au cercle (C).

Dualité entre courbes

Une dualité, qui transforme des points en droites et réciproquement, transforme une courbe (famille de points) de P en une « courbe » (famille de droites) du plan dual P*: mais grâce à la notion d'enveloppe, on retrouve une courbe (famille de points) de P : l'enveloppe de la famille des droites duales, dite courbe duale de .

Ce qui est remarquable, c'est que lorsque la dualité est une polarité, la duale de la duale est la courbe de départ (autrement dit, la famille des droites polaires des points de la courbe duale enveloppe la courbe de départ).

Ci-contre, une figure illustrant ceci, avec une polarité par rapport à un cercle (C).

Cette transformation est une transformation de contact : si une famille de courbes admet une enveloppe, la famille des courbes polaires admet pour enveloppe la polaire de cette enveloppe.

Voir ici pour plus de détails.

Configuration de Pappus, exemple détaillé de dualité

Pour illustrer géométriquement une dualité quelconque, il faut définir le processus par lequel on transforme un point en droite. Un exemple de dualité simple est donné ci-dessous: on prend le quadrangle (4 points) ACZF, on le transforme en quadrilatère (4 droites) aczf, et pour compléter un peu la figure les droites AC, CZ, ZF de la figure de départ ont été tracées, ainsi que les points d'intersection a*c, c*z et z*f de la figure d'arrivée.

Poursuivant le dessin du même exemple, on peut figurer la dualité d'une configuration de Pappus, voir Théorème de Pappus. La configuration de départ est formée des 9 points: AEC DBF XYZ, la configuration d'arrivée est donnée par les 9 droites aec dbf xyz. Dans la configuration de départ on a pris soin de compléter la figure par les 9 droites joignant les points, il s'agit des droites jnp qhk et mgr; de même dans la configuration d'arrivée les intersection des droites donnent naissance aux 9 points JNP QHK MGR.

Dualité dans un espace projectif de dimension finie

C'est la généralisation de ce que nous venons de voir dans le plan ; en dimension , non seulement la dualité échange les points et les hyperplans, mais plus généralement les sous-espaces de dimension k avec ceux de dimension .

Par exemple, en dimension 3, les points sont échangés avec les plans, et les droites avec elles-mêmes. Le théorème dual de : « par deux points distincts » passe une droite et une seule devient : « deux plans distincts se coupent en une droite » . Un tétraèdre de sommets devient par dualité un tétraèdre de faces  ; dans le premier cas, les points A et B déterminent une arête (celle qui passe par A et B, et dans le deuxième aussi (l'intersection de A et B).

Plus précisément le dual E* d'un espace projectif E de dimension est l'espace dont les sous-espaces de dimension k sont les duaux de ceux de dimension de E, et une dualité sur E est une bijection de l'ensemble des sous-espaces projectifs de E dans lui-même qui inverse les inclusions et transforme un sous-espace de dimension k en un de dimension  ; dans le cas réel, une dualité provient d'une homographie de E sur E* (d'une semi-homographie dans le cas général).

Tout ce qui a été vu dans le cas plan se généralise ici, en particulier la notion de polarité par rapport à une conique qui devient ici celle de polarité par rapport à une (hyper)quadrique (non dégénérée).

Notes et références

  1. Phrase attribuée à Hilbert par Otto Blumenthal cf. « Provenance of Hilbert quote on table, chair, beer mug », sur math.stackexchange.com, (consulté le )

Voir aussi

Bibliographie

  • Alain Bigard, Géométrie, Masson, 1998
  • Jean-Denis Eiden, Géométrie analytique classique, Calvage & Mounet, 2009, (ISBN 978-2-91-635208-4)
  • Jean Frenkel, Géométrie pour l'élève professeur, Hermann, 1973
  • Bruno Ingrao, Coniques projectives, affines et métrique, C&M, (ISBN 978-2916352121)
  • Jean-Claude Sidler, Géométrie projective, Interéditions, 1993
  • H.S.M. Coxeter, Projective geometry, Springer, 1998(3e édition); c'est en anglais canadien très facile à comprendre, et les pages sur la dualité et la polarité sont claires, bien que très abstraites.
  • Yves Ladegaillerie, Géométrie, Ellipses, 2003

Liens externes

Read other articles:

French diplomat Boris BoillonBoris Boillon, January 2012BornPontarlier, FranceNationalityFrenchEducationSciences Po, INALCOOccupationDiplomat Boris Boillon was the French ambassador to Tunisia until 24 August 2012. Previously, he was ambassador to Iraq. Early life Arabic-speaker, Boris Boillon spent his childhood in Bejaia, where his father, an English professor, and his mother, a schoolteacher, were based in the 1960s and '70s. Career First Steps in Diplomacy Boillon Boris graduated from the...

 

العلاقات الأوزبكستانية الأوغندية أوزبكستان أوغندا   أوزبكستان   أوغندا تعديل مصدري - تعديل   العلاقات الأوزبكستانية الأوغندية هي العلاقات الثنائية التي تجمع بين أوزبكستان وأوغندا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للد�...

 

Peta menunjukan lokasi Hagonoy Hagonoy adalah munisipalitas yang terletak di provinsi Davao del Sur, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 48.161 jiwa atau 10.951 rumah tangga. Pembagian wilayah Secara administratif Hagonoy terbagi menjadi 21 barangay, yaitu: Aplaya Balutakay Clib Guihing Hagonoy Crossing Kibuaya La Union Lanuro Lapulabao Leling Mahayahay Malabang Damsite Maliit Digos New Quezon Paligue Poblacion Sacub San Guillermo San Isidro Sinayawan Tologa...

Evgenij Lennorovič Giner Evgenij Lennorovič Giner (in russo Евге́ний Ленно́рович Ги́нер?; Kharkiv, 26 maggio 1960) è un imprenditore e dirigente sportivo russo. Presidente del comitato finanziario della Federazione calcistica della Russia[1] è dal febbraio 2001 presidente della squadra di calcio PFC CSKA Moscow. Sotto la sua presidenza il CSKA ha vinto 6 campionati russi (2003, 2005, 2006, 2013, 2014, 2016), 7 coppe di Russia (2002, 2005, 2006, 2008, ...

 

A Gilbert tessellation Gilbert tesselation with axis-parallel cracks In applied mathematics, a Gilbert tessellation[1] or random crack network[2] is a mathematical model for the formation of mudcracks, needle-like crystals, and similar structures. It is named after Edgar Gilbert, who studied this model in 1967.[3] In Gilbert's model, cracks begin to form at a set of points randomly spread throughout the plane according to a Poisson distribution. Then, each crack spread...

 

Person who has committed a sex crime This article is about the criminal term. For the novel, see The Sex Offender: A Novel. For the Polkadot Cadaver album, see Sex Offender (album). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The neutrality of this article is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are me...

Archaeological site in Louisiana, US This article's lead section may be too long. Please read the length guidelines and help move details into the article's body. (July 2022) Watson BrakeArtist's conception of the Watson Brake SiteLocation within Louisiana todayShow map of LouisianaShow map of the United StatesWatson Brake (North America)Show map of North AmericaLocationLogtown, Ouachita Parish, Louisiana, USARegionOuachita Parish, LouisianaCoordinates32°22′6.31″N 92°7′53.00...

 

US Airways IATA ICAO Kode panggil US AWE CACTUS Didirikan1937 (sebagai All American Aviation)Berhenti beroperasi17 Oktober 2015 (Bergabung dengan American Airlines)Penghubung Daftar hub Bandar Udara Internasional Charlotte/Douglas Bandar Udara Internasional Philadelphia Bandar Udara Internasional Phoenix Sky Harbor Bandar Udara Nasional Ronald Reagan Washington[1] Program penumpang setiaDividend MilesLounge bandaraUS Airways ClubAliansiOneworld (afilasi)[2]Anak perusahaan Pied...

 

Provisional IRA bombing in Belgium 1979 Brussels bombingPart of the TroublesThe Grand-PlaceLocationBrussels, BelgiumCoordinates50°50′48″N 4°21′9″E / 50.84667°N 4.35250°E / 50.84667; 4.35250Date28 August 1979 15:00 (UTC)Attack typeBombDeaths0Injured18PerpetratorProvisional Irish Republican Army (IRA) vteThe Troublesin Britain and continental Europe 1970 – 1981 Aldershot bombing Old Bailey bombing King's Cross & Euston bombings Westminster bombing M62 c...

English reflecting telescope, built 1785–1789 For the telescope at Green Bank Observatory, see 40-foot radio telescope. 40-foot telescopeAlternative namesGreat Forty-Foot telescope Location(s)Slough, Borough of Slough, Berkshire, South East England, EnglandCoordinates51°30′30″N 0°35′43″W / 51.5082°N 0.5954°W / 51.5082; -0.5954 Built1785–1789 (1785–1789) First light19 February 1787 Decommissioned1840 Telescope stylealtazim...

 

For the extended play by Charice, see Grown-Up Christmas List (EP). 1992 single by Amy GrantGrown-Up Christmas ListSingle by Amy Grantfrom the album Home for Christmas Released1992 (U.S.)Recorded1992GenrePop, ChristmasLength3:44 (edit)5:00 (album)LabelA&M, WordSongwriter(s)David FosterLinda Thompson-JennerAmy GrantProducer(s)Brown BannisterAmy Grant singles chronology Breath of Heaven (Mary's Song) (1992) Grown-Up Christmas List (1992) Let the Season Take Wing (1992) Music videoGrown-Up C...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

Torymus notatus Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Hymenoptera Famili: Torymidae Genus: Torymus Spesies: Torymus notatus Torymus notatus adalah spesies tawon khalkhos yang tergolong ke dalam famili Torymidae. Spesies ini juga merupakan bagian dari ordo Hymenoptera. Spesies Torymus notatus sendiri merupakan bagian dari genus Torymus yang mencakup lebih dari 400 spesies di berbagai belahan dunia. Sebagian besar spesies dalam genus tersebut merupakan sp...

 

Angkatan Udara AzerbaijanAzərbaycan Hərbi Hava QüvvələriLencana Angkatan Udara AzerbaijanDibentuk26 Juni 1918Negara AzerbaijanTipe unitAngkatan udaraPeranMempertahankan kedaulatan dan keutuhan negara serta kepentingannya melalui penggunaan kekuasaan udara yang efektifJumlah personel12.000 personelSekitar 250 pesawat (IISS 2014)Bagian dariAngkatan Bersenjata AzerbaijanMarkasBakuUlang tahun26 JuniPertempuran Perang Nagorno-Karabakh Perang Nagorno-Karabakh 2020 TokohKomandan Angkatan U...

 

Town in Western AustraliaCervantesWestern AustraliaThe main shopping strip at Cervantes, 2015CervantesCoordinates30°30′00″S 115°03′58″E / 30.5°S 115.066°E / -30.5; 115.066Population480 (SAL 2021)[1][2]Established1962Postcode(s)6511Area9.8 km2 (3.8 sq mi)Location 198 km (123 mi) NNW of Perth 227 km (141 mi) SSE of Geraldton 24 km (15 mi) S of Jurien Bay LGA(s)Shire of DandaraganState electorate(s)...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tōma, Hokkaido – news · newspapers · books · scholar · JSTOR (June 2022) (Learn how and when to remove this message) You can help expand this article with text translated from the corresponding article in Japanese. (June 2022) Click [show] for important t...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

 

Sporting event delegationGuyana at the1960 Summer OlympicsFlag of British GuianaIOC codeGUY(GUA used at these Games)NOCGuyana Olympic Associationin RomeCompetitors5 (4 men and 1 woman) in 2 sportsMedals Gold 0 Silver 0 Bronze 0 Total 0 Summer Olympics appearances (overview)19481952195619601964196819721976198019841988199219962000200420082012201620202024 British Guiana (now Guyana) competed at the 1960 Summer Olympics in Rome, Italy. Results by event Athletics Men's 200 metres Clayton Glasgow M...

NFL team season 1990 Philadelphia Eagles seasonOwnerNorman BramanHead coachBuddy RyanHome fieldVeterans StadiumResultsRecord10–6Division place2nd NFC EastPlayoff finishLost Wild Card Playoffs(vs. Redskins) 6–20Uniform ← 1989 Eagles seasons 1991 → The 1990 Philadelphia Eagles season was the team's 58th in the National Football League (NFL). The team made the postseason yet again with a 10–6 overall record, despite beginning the season with disappointing early-s...

 

This article is about a letter in the Cyrillic alphabet. For the electronics company, see Hollywood (graphics chip). It has been suggested that this article be merged into Cyrillic O variants. (Discuss) Proposed since December 2023. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Broad On – news · newspapers · books...