Dissin (département)

Dissin est un département du Burkina Faso située dans la province Ioba et dans la région Sud-Ouest.

Villages

Le département comprend un village chef-lieu (populations actualisées en 2012) :

et 25 autres villages :

Notes et références

Liens externes

Articles connexes

Read other articles:

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Dragons novel – news · newspapers · books · scholar · JSTOR (July 2015) (Learn how and when to remove this template message) The Dragons Cover of the first editionAuthorDouglas NilesCountryUnited StatesLanguageEnglishGenreFantasy novelMedia typePrint (Paperback)ISB...

 

Antiobesity drug LorcaserinClinical dataTrade namesBelviqOther namesAPD-356AHFS/Drugs.comMonographMedlinePlusa613014License data US DailyMed: Lorcaserin US FDA: Lorcaserin Routes ofadministrationOralATC codeA08AA11 (WHO) Legal statusLegal status US: Schedule IV / Withdrawn[1] Pharmacokinetic dataProtein binding70%[2]MetabolismHepatic (extensive)[2]Elimination half-life11 hours[2]ExcretionRenal (92.3%), Faecal (2.2%)&...

 

Analisis kecepatan lepas oleh Isaac Newton. Proyektil A dan B jatuh kembali ke Bumi. Proyektil C mencapai orbit lingkaran, D orbit elips. Proyektil E lepas. Dalam ilmu fisika, kecepatan lepas (Inggris: escape velocity) adalah kecepatan ketika energi kinetis dan energi potensial gravitasi suatu objek adalah nol.[nb 1] Inilah kecepatan yang dibutuhkan untuk terlepas dari medan gravitasi tanpa dorongan lebih lanjut. Untuk benda bulat simetris, kecepatan lepasnya dihitung menggunakan ...

United States: Television Template‑class United States portalThis template is within the scope of WikiProject United States, a collaborative effort to improve the coverage of topics relating to the United States of America on Wikipedia. If you would like to participate, please visit the project page, where you can join the ongoing discussions. Template Usage Articles Requested! Become a Member Project Talk Alerts United StatesWikipedia:WikiProject United StatesTemplate:WikiProject United St...

 

Sutardji Calzoum BachriSutardji Calzoum Bachri pada tahun 2022Lahir24 Juni 1941 (umur 82)Indragiri Hulu, Riau, IndonesiaPekerjaanPenyairpenulisTahun aktif1966—sekarangSuami/istriMariam LindaAnakMila SeraiwangiKarier menulisGenrePuisisajakAliran sastraAngkatan 70PenghargaanAnugerah Seni Dewan Kesenian Jakarta (1977), The S.E.A. Write Award (1979), dll Sutardji Calzoum Bachri (lahir 24 Juni 1941) adalah seorang penyair kontemporer terkemuka Indonesia. Berkat dedikasinya terhad...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Softdisk disk magazine – news · newspapers · books · scholar · JSTOR (September 2018) (Learn how and when to remove this message) Retail package of Softdisk #27 (1984) Softdisk (ISSN 0886-4152), originally Softdisk Magazette, was a disk magazine for t...

American politician William KelloggHon. William Kellogg photographed by Julian Vannerson in 1859Member of the U.S. House of Representativesfrom Illinois's 4th districtIn officeMarch 4, 1857 – March 3, 1863Preceded byJames KnoxSucceeded byCharles M. HarrisMember of the Illinois House of RepresentativesIn office1849–1850 Personal detailsBorn(1814-07-08)July 8, 1814Ashtabula County, Ohio, USDiedDecember 20, 1872(1872-12-20) (aged 58)Peoria, Illinois, USResting p...

 

2022年肯塔基州聯邦參議員選舉 ← 2016年 2022年11月8日 (2022-11-08) 2028年 →   获提名人 蘭德·保羅 查爾斯·布克 政党 共和黨 民主党 民選得票 913,326 564,311 得票率 61.8% 38.2% 各縣結果保羅:     50–60%     60–70%     70–80%     80–90%布克:     50–60%     60–70% 选前聯邦參議...

 

View in meta-ethics Part of a series onSocrates I know that I know nothing The unexamined life is not worth living Gadfly Trial of Socrates Eponymous concepts Socratic dialogue Socratic fallacy Socratic intellectualism Socratic irony Socratic method Socratic paradox Socratic problem Socratic questioning Pupils Plato Xenophon Aeschines Antisthenes Aristippus Related topics Academic skepticism Aristotelianism Bibliography Cultural depictions Cynicism Cyrenaics Megarians Platonism Stoicism The C...

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

Рильський Владислав Олександрович  Лейтенант Загальна інформаціяНародження 20 липня 1992(1992-07-20)ВінницяСмерть 14 серпня 2014(2014-08-14) (22 роки)НовосвітлівкаAlma Mater Академія сухопутних військ імені гетьмана Петра СагайдачногоВійськова службаПриналежність  УкраїнаВид ЗС Су�...

 

Festival of the Crow peoples This April 2023 needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this April 2023. Unsourced material may be challenged and removed.Find sources: Crow Fair – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this message) Dancers at Crow Fair in 1941 The Crow Fair was created in 1904 by Crow leaders and an Indian ...

There are infinitely many prime numbers This article is about the theorem on the infinitude of prime numbers. For the theorem on perfect numbers and Mersenne primes, see Euclid–Euler theorem. For the theorem on the divisibility of products by primes, see Euclid's lemma. Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proven by Euclid in his work Elements. There are several proofs of the theorem. Euclid's pr...

 

[[Berkas:Indian states accordin Not happy sad you not interested poor now Government of India not all call me tomorrow morning dear not all come home Yes come office room Yes I am sending very not interested poor now Government open now join now I am sending some g to the party of their chief minister (geo).svg|jmpl|Negara bagian India menurut partai dari ketua menteri mereka  Partai Bharatiya Janata  Kongres Nasional India  Partai lainnya  Pemerintahan...

 

Major Tactical Air Command bases and Units in the Continental United States 1946 - 1992 Altus AFB, Oklahoma(11 June 1952 – 21 June 1954)63d Troop Carrier Group/Wing Bergstrom AFB, Texas(22 March 1946 – 1 December 1948, 1 July 1957 – 1 October 1958,1 July 1966 – 1 June 1992)27th Fighter Wing (1957–1958)75th Reconnaissance Wing (1966–1971)67th Reconnaissance Wing (1971–1992) Blytheville AFB, Arkansas(15 April – 15 August 1946, 1 July 1954 – 1 April 1958)461st Tactical Bombard...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2022) أنتون إسكوبار   معلومات شخصية الميلاد 16 يونيو 1998 (العمر 26 سنة)نيغران  مركز اللعب مهاجم الجنسية إسبانيا  معلومات النادي النادي الحالي Polvorín FC [الإنجل...

 

Peruvian-Ecuadorian indigenous peoples For other uses, see Jivaro. Pwanchir Pitu, Achuar shaman The Jivaroan peoples are the indigenous peoples in the headwaters of the Marañon River[1] and its tributaries, in northern Peru and eastern Ecuador. The tribes speak the Chicham languages.[2] Their traditional way of life relies on gardening, and on hunting with blowguns and darts poisoned with curare. Complex spiritual beliefs are built around both of these activities. Jivaroan cu...

 

此條目没有列出任何参考或来源。 (2013年12月7日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 雪月花(讀法為せつげつか或せつげっか)是日本的慣用語之一,代表自然界的美麗景物,和語叫「月雪花(つきゆきはな)」。其典故出自中國唐朝詩人白居易的七言律詩《寄殷協律》: 五歲優游同�...

الناحية البلد إيران  جزء من مقاطعة في إيران  تعديل مصدري - تعديل   الناحية أو القضاء ترجم أيضا بلدة (بالفارسية: بخش bakhsh) هو نوع من التقسيم الإداري لإيران ویتشکل المقاطعات. ناحية مركزية (بالفارسية: بخش bakhsh markazi) هي ناحية ضمن المقاطعات. كل محافظة في التقسيم الإدارى الإير�...

 

Prasasti Pemimpin Libu Niumateped, mungkin diterbitkan pada tahun 8 peemrintahan Shoshenq IV[1] Hedjkheperre Setepenre Shoshenq IV adalah seorang penguasa Mesir Kuno dari Dinasti ke-XXII, antara pemerintahan Shoshenq III dan Pami. Pada 1986, David Rohl mengusulkan bahwa ada dua raja Shoshenq dengan nama depan Hedjkheperre – (i) pendiri dinasti yang terkenal, Hedjkheperre Shoshenq I, dan (ii) firaun kemudian dari paruh kedua dinasti, yang disebut Rohl sebagai Hedjkheperre Shoshenq (b...