La courbe sinus fermée du topologue est l'adhérence de cette courbe dans le plan euclidien, et constitue un espace compact satisfaisant des propriétés analogues.
La courbe sinus prolongée du topologue est l'union de l'ensemble précédent avec un segment ; elle est connexe par arcs mais pas localement connexe[1].
Définition
La courbe sinus du topologue T est définie comme la courbe représentative de la fonction f qui à tout x strictement positif associe sin(1⁄x) et qui vaut 0 en 0 :
L'ensemble des valeurs d'adhérence de la fonctionf en 0 est égal à celui de la fonction sin en +∞, c'est-à-dire au segment [-1, 1] (en particulier, f n'a pas de limite en 0). Ce phénomène est illustré par l'accumulation d'oscillations de la courbe au voisinage de l'origine.
Propriétés
La courbe sinus du topologue T est connexe mais ni localement connexe ni connexe par arcs. C'est parce que l'ensemble contient le point (0,0) mais qu'il n'est pas possible de relier la fonction à l'origine ni de tracer un chemin.
L'espace T est l'imagecontinue d'un espace localement compact (T est l'image de {−1} ∪ ]0, 1] par l'application g définie par g(−1) = (0,0) et g(x) = (x, sin(1/x)) pour x > 0), mais n'est pas localement compact lui-même.
Deux variantes de la courbe sinus du topologue ont d'autres propriétés intéressantes.
La courbe sinus fermée du topologue peut être définie en prenant la courbe sinus du topologue et en ajoutant l'ensemble des points adhérents, . Cet espace est fermé et borné et donc compact par le théorème de Borel-Lebesgue, mais a des propriétés similaires à la courbe sinus du topologue — il est connexe mais ni localement connexe ni connexe par arcs.
La courbe sinus prolongée du topologue peut être définie en prenant la clôture topologique de T et en ajoutant l'ensemble . Cet espace est connexe par arcs mais non localement connexe.