Signs

Signs
Ohjaaja M. Night Shyamalan
Käsikirjoittaja M. Night Shyamalan
Tuottaja
Säveltäjä James Newton Howard
Kuvaaja Tak Fujimoto
Leikkaaja Barbara Tulliver
Pukusuunnittelija Ann Roth
Pääosat
Valmistustiedot
Valmistusmaa Yhdysvallat
Tuotantoyhtiö Touchstone Pictures
Levittäjä InterCom
Netflix
Ensi-ilta 2. elokuuta 2002
Kesto 106 minuuttia
Alkuperäiskieli englanti
Budjetti 72 miljoonaa dollaria
Tuotto 408,2 miljoonaa dollaria
Aiheesta muualla
IMDb
Elonet
AllMovie

Signs on vuonna 2002 ensi-iltansa saanut jännityselokuva. Elokuvan ohjasi M. Night Shyamalan ja sen pääosissa ovat Mel Gibson ja Joaquin Phoenix.

Juoni

Elokuva kertoo entisestä papista Graham Hessistä, joka menetti uskonsa Jumalaan vaimonsa kuoltua auto-onnettomuudessa. Papin virka on vaihtunut maanviljelijäksi ja hän asustelee maatilalla ja elää rauhallista elämää kahden lapsensa, Bonin ja Morganin sekä veljensä Merrillin kanssa. Maatilan rauha rikkoontuu eräänä yönä, kun pellolle ilmestyy peltokuvioita. Samanlaisia kuvioita alkaa ilmestyä lisää sekä Hessin pellolle että ympäri maailmaa. Aluksi Graham epäilee kuvioita petokseksi, mutta pienet merkit alkavat todistaa jotain muuta.

Rooleissa

 Mel Gibson  Graham Hess  
 Joaquin Phoenix  Merrill Hess  
 Rory Culkin  Morgan Hess  
 Abigail Breslin  Bo Hess  
 Cherry Jones  Caroline Paski  
 M. Night Shyamalan  Ray Reddy  
 Patricia Kalember  Colleen Hess  
 Ted Sutton  SFC Cunningham  
 Merritt Wever  Tracey Abernathy  

Aiheesta muualla

  • Signs Internet Movie Databasessa (englanniksi)
Tämä elokuviin liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.

Read other articles:

Partai Persatuan Ketua umumDjaelani NaroSekretaris JenderalMardinsyahDibentuk3 Januari 1999IdeologiIslamPolitik IndonesiaPartai politikPemilihan umum Partai Persatuan adalah salah satu partai politik yang pernah ada di Indonesia. Sejarah Partai Persatuan didirikan oleh Djaelani Naro (HJ. Naro) dan beberapa tokoh lainnya dari Partai Persatuan Pembangunan (PPP) karena kecewa atas hasil Muktamar PPP. Tujuan didirikannya Partai Persatuan ini sama sekali tidak dimaksudkan untuk menggembosi PPP, ju...

 

Unilever plcJenisPublikKode emitenLSE: ULVRNYSE: UNNYSE: ULEuronext: UNAIndustriBarang Rumah TanggaPendahuluLever BrothersMargarine UnieDidirikan1930; 94 tahun lalu (1930) melalui penggabungan)[1]PendiriAntonius Johannes JurgensWilliam Lever, 1st Viscount LeverhulmeJames Darcy LeverSamuel van den BerghGeorg SchichtKantorpusatUnilever House, London, Inggris[2]Wilayah operasiSeluruh duniaTokohkunciMarijn Dekkers(Chairman)Paul Polman(CEO)ProdukMakanan, minuman, pembersi...

 

η Eridani Lokasi η Eridani (dilingkari) Data pengamatan Epos J2000.0      Ekuinoks J2000.0 Rasi bintang Eridanus Asensio rekta  02j 56m 25,64948d[1] Deklinasi  −08° 53′ 53,3221″[1] Magnitudo tampak (V) +3,87[2] Ciri-ciri Kelas spektrum K1+ IIIb[3] Indeks warna U−B _0,98[2] Indeks warna B−V +1,12[2] Jenis variabel suspected[4] AstrometriKecepatan...

Ethnic group of South Asia This article is about the ethnic group of the Himalayas. For the mythological creature, see Yaksha. Not to be confused with the Yaka people of Congo. Yākkhāयाक्खाYakkha women in traditional dressTotal population   Nepal 17,460 (2021)[1] IndiaSikkim193 (2006)[2]LanguagesYakkha language, NepaliReligionMajority: •Kiratism 81% Others: •Hinduism 11.50% [3]Related ethnic groupsLimbu, Sunuwar and Rai Yakkha (Nep...

 

Estonian javelin thrower Magnus KirtMagnus Kirt at his home town of Tõrva, Estonia.Personal informationNationalityEstonianBorn (1990-04-10) 10 April 1990 (age 33)Tõrva, EstoniaEducationTallinn University of Technology[1]Height1.91 m (6 ft 3 in)[2]Weight87 kg (192 lb)SportCountryEstoniaSportAthleticsEventJavelin throwClubAudentes SK[3]Achievements and titlesPersonal best90.61 m (2019) Medal record World Championships 2019 Doha Javelin thr...

 

Bacarai KasihStiker label singel Bacarai KasihSingel oleh Orkes GumarangSisi-AIyo-IyoFormatpelat 10GenreJazz latinmusik MinangDurasi2:48[1]LabelMutiara MA-09-APPenciptaAsbon Madjid Bacarai Kasiah adalah sebuah lagu yang diciptakan oleh Asbon Madjid, serta dinyanyikan oleh Orkes Gumarang dengan iringan vokal oleh Nurseha. Referensi ^ Ijo-Ijo / Batjarai Kasiah. Orkes Gumarang. Mutiara.  Pranala luar Ijo-Ijo / Batjarai Kasiah di Discogs (Indonesia) Ijo-Ijo / Batjarai Kasiah di Irama...

  هذه المقالة عن الشاعر المصري أحمد شوقي. لمعانٍ أخرى، طالع أحمد شوقي (توضيح). أحمد شوقي علي معلومات شخصية اسم الولادة أحمد شوقي علي أحمد شوقي بك الميلاد 28 جمادى الآخرة 1285 هـ / 16 أكتوبر 1868 القاهرة، الخديوية المصرية الوفاة 1351 هـ / 14 أكتوبر 1932 (عن عمر يناهز 64) القاهرة، المملك...

 

Airliner with a single aisle Four-abreast cross-section Narrow-body Boeing 737-300 in front of a Boeing 777-300ER wide-body A narrow-body aircraft or single-aisle aircraft is an airliner arranged along a single aisle, permitting up to 6-abreast seating in a cabin less than 4 metres (13 ft) in width. In contrast, a wide-body aircraft is a larger airliner usually configured with multiple aisles and a fuselage diameter of more than 5 metres (16 ft), allowing at least seven-abreast seat...

 

Provincial park of Ontario, Canada Arrowhead Provincial ParkIUCN category II (national park)LocationOntario, CanadaNearest cityHuntsville, OntarioCoordinates45°23′30″N 79°11′55″W / 45.39167°N 79.19861°W / 45.39167; -79.19861[1]Area1,237 ha (3,060 acres)Established1971[2]Governing bodyOntario Parks Arrowhead Provincial Park is located north of Huntsville, Ontario, Canada, and is part of the Ontario Parks system. A portion of th...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of Saint Seiya films – news · newspapers · books · scholar · JSTOR (July 2014) (Learn how and when to remove this message) Saint Seiya聖闘士星矢(Seinto Seiya)GenreAction,[1] fantasy,[2] mythological[3]Created byMasami Kur...

 

Compact Riemann surface of genus 3 For the Klein quadric, see Klein quadric. The Klein quartic with the two dual Klein graphs(14-gon edges marked with the same number are equal.)The Klein quartic is a quotient of the heptagonal tiling (compare the 3-regular graph in green) and its dual triangular tiling (compare the 7-regular graph in violet). In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus 3 with the highest possible order automorphis...

 

Shepherds in Greek mythology The Apulian shepherd is changed into olive tree, engraving by Crispijn van de Passe, ca. 1602. In Greek and Roman mythology, the Messapian shepherds (Ancient Greek: Μεσσάπιοι) are the flock-tending inhabitants of Messapia (northern Apulia), an ancient region in the Italian Peninsula. They feature in two similar myths, where they offend local nymphs and are punished by them for their impiousness. Mythology Shepherd In one version of the myth, some nymphs, ...

Artikel ini sebagian besar atau seluruhnya berasal dari satu sumber. Diskusi terkait dapat dibaca pada the halaman pembicaraan. Tolong bantu untuk memperbaiki artikel ini dengan menambahkan rujukan ke sumber lain yang tepercaya.Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Serta Ginting...

 

Japanese train service HamanasuA Hamanasu service in June 2013 headed by a Class ED79 electric locomotiveOverviewService typeExpressStatusDiscontinuedLocaleJapanFirst service June 1955 (Semi Express) March 1988 (Overnight Express) Last serviceMarch 2016Former operator(s) ■ JNR ■ JR Hokkaido RouteTerminiAomoriSapporoDistance travelledApprox. 480 kmAverage journey timeApprox. 7 hours 30 minutesService frequency1 return service dailyOn-board servicesSeating arrangements2+2 reclining sea...

 

For the 2022 Russian film, see Zemun (film). Municipality in Belgrade, SerbiaZemun Земун (Serbian)MunicipalityPanoramic view of Zemun from Gardoš Tower FlagCoat of armsLocation of Zemun within the city of BelgradeCoordinates: 44°51′N 20°24′E / 44.850°N 20.400°E / 44.850; 20.400Country SerbiaCityBelgradeSettlements4Government • MayorGavrilo Kovačević (SNS)Area[1][2] • Urban99.42 km2 (38.39 sq...

2015 landmark US Supreme Court case Obergefell redirects here. For the case's plaintiff, see Jim Obergefell. 2015 United States Supreme Court caseObergefell v. HodgesSupreme Court of the United StatesArgued April 28, 2015Decided June 26, 2015Full case nameJames Obergefell, et al., Petitioners v. Richard Hodges, Director, Ohio Department of Health, et al.Docket no.14-556Citations576 U.S. 644 (more)135 S. Ct. 2584; 192 L. Ed. 2d 609; 83 U.S.L.W. 4592; 25 Fla. L. Weekly Fed. S 472; 2015 WL 24734...

 

Historical type of American bar The Jersey Lilly, Judge Roy Bean's saloon in Langtry, Texas, c. 1900 A Western saloon is a kind of bar particular to the Old West. Saloons served customers such as fur trappers, cowboys, soldiers, lumberjacks, businessmen, lawmen, outlaws, miners, and gamblers. A saloon might also be known as a watering trough, bughouse, shebang, cantina, grogshop, and gin mill. The first saloon was established at Brown's Hole, Wyoming, in 1822, to serve fur trappers.[citat...

 

Discontinued Microsoft operating system This article is about Microsoft DOS specifically. For compatible operating systems, see DOS. Operating system MS-DOSThe command-line interface, showing that the current directory is the root of drive C:DeveloperMicrosoftWritten inx86 assembly,[1] later versions also used COS familyDOSWorking statePreserved pieces exist in 32-bit WindowsSource modelClosed source; open source for versions 1.25, 2.11 and 4.00Initial releaseAugust 12, 1981;...

American puppeteer (born 1944) Frank OzOz at the 38th Annual Saturn Awards 2012BornFrank Richard Oznowicz (1944-05-25) May 25, 1944 (age 80)Hereford, Herefordshire, EnglandCitizenshipUnited States[1]Alma materOakland City CollegeOccupationsPuppeteerfilmmakeractorYears active1961–presentSpouses Robin Garsen ​ ​(m. 1979; div. 2005)​ Victoria Labalme ​(m. 2011)​ Children4 Frank Oz (born Frank Ri...

 

Hasse diagram of the lattice of subgroups of the dihedral group Dih4. In the second row are the maximal subgroups; their intersection (the Frattini subgroup) is the central element in the third row. So Dih4 has three non-generating elements beyond e. In mathematics, particularly in group theory, the Frattini subgroup Φ ( G ) {\displaystyle \Phi (G)} of a group G is the intersection of all maximal subgroups of G. For the case that G has no maximal subgroups, for example the trivial grou...