Linus Torvalds aloitti Linuxin kehittämisen opiskellessaan Helsingin yliopistossatietojenkäsittelytiedettä.[6] Torvalds osti ensimmäisen IBM PC:nsä vuonna 1991 hintojen laskettua riittävästi, mutta oli tyytymätön sen MS-DOS -käyttöjärjestelmään.[7][6] Torvaldsia itseään kiinnosti enemmän Unix, jota hän oli käyttänyt yliopiston tietokoneilla.[6] Vuonna 1990 Torvalds osallistui lyhyelle Unix-kurssille yliopistossa, johon oli juuri saatu MicroVAXUltrix-käyttöjärjestelmällä.[7][8] Aiemmin Torvaldsilla oli ollut Commodore VIC-20 ja Sinclair QL.[7]
Yksi kurssikirjoista oli Andrew TanenbauminOperating Systems: Design and Implementation, jossa kuvattiin Unixin kaltaista Minixiä.[8]
Torvaldsin alkuperäinen tavoite ei ollut käyttöjärjestelmän ytimen kirjoittaminen vaan tutustuminen ostamansa tietokoneen ominaisuuksiin.[9] Torvalds aloitti kokeilut kahden vuoroaan vaihtavan tehtävän käsittelyllä.[8][7] Kokeilujen myötä hän havaitsi koossa olevan melkein riittävästi ytimeen, jolla voisi lukea uutisryhmiä yliopiston palvelimilta.[8][7]
Muistinhallinnan, prosessienvuorontamisen ja laite-I/O:n kokeilujen myötä Torvalds kehitti käyttöjärjestelmän ytimen.[9] Torvalds kehitti pääte-emulaattoriaan ja lisäsi siihen ajurin levyä varten ja tuen Minixin tiedostojärjestelmälle.[8][7]
Vuonna 1991 Torvalds kyseli uutisryhmissä POSIX-standardin dokumentteja, jotka olivat tuolloin kalliita.[10] POSIX mahdollisti lähdekooditason yhteensopivuuden GNU- ja BSD-projektien ohjelmien kanssa.[10] Tuohon aikaan SunOS oli de facto -standardi jossakin BSD:n ja System V:n välillä.[10]
Torvalds toteutti assemblylla ja C-ohjelmointikielellä käyttöjärjestelmän ytimen, joka hänen omien sanojensa mukaan käytti laajalti GCC-kääntäjän ominaisuuksia.[11] Työ eteni hitaasti eikä hän kertonut hankkeestaan vielä muille. Torvaldsin alkuperäisenä tarkoituksena ei ollut luoda käyttöjärjestelmää koko maailmalle, vaan ainoastaan omiin tarpeisiinsa. Jos hän olisi jatkanut yksin, Linuxia olisi tuskin julkaistu, sillä sen kehittäminen olisi pysähtynyt Torvaldsin omien tarpeiden täytyttyä. Torvalds julkisti projektinsa 25. elokuuta1991 kirjoittamalla comp.os.minix-uutisryhmään, jota pidetään Linuxin syntymäpäivänä.[12][1]
Versio 0.01 valmistui 17. syyskuuta samana vuotena, joka oli ensimmäinen lähdekoodijulkaisu.[13][1] Ensimmäinen julkaisu oli Torvaldsin kirjoittama paitsi vsprintf-rutiini, joka oli kirjoitettu yhdessä Lars Wirzeniusin kanssa.[14]
Torvalds oli itse tehnyt käännökset bash-komentorivitulkista ja GCC-kääntäjästä.[12][13]
Lokakuussa 1991 versio 0.02 oli valmis ja Torvalds päätti laittaa sen vapaasti kaikkien saataville. 5. lokakuutauutisryhmään lähettämässään viestissä Torvalds kertoi lähdekoodin löytyvän FTP-palvelimen nic.funet.fi hakemistosta /pub/OS/Linux ja antoi ohjeita kääntämistä varten.[15] Hän varoitti, että ohjelma oli hakkerilta hakkereille ja ei ollut siten sopiva niille, jotka hakivat vaihtoehtoa Minixille.[15] Se oli kuitenkin vielä riittävän pieni ymmärtää, käyttää sekä muokata ja toivoi kommentteja.[15]
Alun perin Torvalds oli suunnitellut antavansa ohjelmansa nimeksi ”Freax”[9], joka olisi johdettu sanoista free Unix (vapaa Unix) tai freaks (omituiset, intoilijat, friikit). FTP-palvelimen ylläpitäjä Ari Lemmke ei pitänyt nimestä ja käytti aiempaa työnimeä ”Linux”.[8] Hän oli perustanut omalle xgw:n palvelimelleen Linux -nimisen käyttöalueen Torvaldsia varten.
Palautetta ja virheraportteja tuli valtavasti. Internetin ja avoimesti saatavilla olleen lähdekoodin ansiosta ihmiset eri puolilla maailmaa pääsivät kehittämään Linuxia. Ytimen versio 0.10 julkaistiin marraskuun alussa 1991, jolloin käyttäjiä oli 10–20. 0.10 oli ensimmäinen versio, joka oli käyttökelpoinen ilman Minixiä, jolloin Linus päätti nostaa versionumeron suoraan 0.03:sta 0.10:iin. 8. joulukuuta1991 julkaistu versio 0.11 oli jo täysin itsenäisesti käytettävissä: ydin voitiin kääntää Linuxissa itsessään. 0.11-version myötä jaettavana oli myös muutamia ohjelmia (gcc, bash, make, uemacs, tar) mutta järjestelmästä puuttui muun muassa init ja login-toiminnot.[11][16]
Version 0.12 yhteydessä Linus kertoi aikomuksesta käyttää GNU GPL -lisenssiä, joka korvasi aiemmin Torvaldsin itse kirjoittaman lisenssin.[17][18]
Ytimen nykyinen lisenssi on GPL versio 2 (GPLv2) ja Torvalds on sanonut vastustavansa siirtymistä versioon 3 sen lisäämien käyttörajoituksien vuoksi.[19]
Torvalds on kuvaillut päätöstään julkaista Linux-ydin GPL-lisenssillä parhaaksi tekemäkseen asiaksi.[20]
Marraskuussa 1991 Torvalds tuhosi vahingossa tietokoneensa Minix-osion, joka osaltaan vaikutti kehittämään Linuxia eteenpäin.[9]
Kun versio 0.12 julkaistiin tammikuussa 1992, Linuxin parissa työskenteli aktiivisesti lähes kaksisataa ihmistä. Tuolloin ydin oli jo vakaa ja toimiva. Yhdessä GNU-hankkeen luomien työkalujen kanssa siitä oli rakennettavissa kokonainen käyttöjärjestelmä. Linux alkoi levitä nopeasti. Vuonna 1992 saatiin valmiiksi ensimmäinen graafisella käyttöliittymällä varustettu jakelu.[21] Näihin aikoihin Linuxista kiinnostuttiin myös yliopistomaailman ulkopuolella.
Ytimen julkaisun yhteydessä Torvalds ja Tanenbaum kävivät laajalti tunnetun debatin ytimen rakenteesta.[22][23][24] Keskeiset kritiikin kohteet Tanenbaumilta oli ytimen rakenne (monoliittinen vs. mikroydin) ja siirrettävyys laitteistoalustalta toiselle.[23] Torvalds vastasi avaamaan Minixin lisenssiä ja julkaisemaan ”harrasteprojektin” ilmaiseksi, sekä sanomalla että käyttöjärjestelmän keskeinen tarkoitus on juurikin laitteisto-ominaisuuksien hyödyntäminen ja niiden piilottaminen korkean tason kutsujen taakse.[23]
Microsoftin palkkaama Ken Brown ajoi väitettä, jossa Torvalds olisi kopioinut Minixiä, mutta Tanenbaum on tyrmännyt tämän väitteen.[25]
Vuonna 1992 ytimeen tuli ulkopuolista kehitystä muun muassa verkkoprotokollapinon, SCSI- ja äänilaiteajureiden, Ext2-tiedostojärjestelmän ja ELF-binäärimuodon osalle.[9] Versiossa 0.95 oli myös tuki näennäismuistille.[9]
Torvaldsilla oli tavoite tehdä ytimestä siirrettävämpi kun hän sai käyttöönsä Alpha-suorittimella toimivan järjestelmän.[26]
Torvaldsin mukaan Linux/68k-projekti ytimen siirtämisessä Motorola 68000 -sarjan suorittimille ei painottanut niinkään siirtämistä vaan sen uudelleen kirjoittamista osin.[26][27] Alkuperäisessä ytimen rakenteessa ei ollut siirtämisen estävää suunnittelua vaan ero oli sen toteutuksessa.[26] M68k-versio alkoi vain Amiga-tuella ja Hamish Macdonald sekä Greg Harp julkaisivat sen ensimmäisen version 1. heinäkuuta 1993.[28] Pian tämän jälkeen Atari-käyttäjät työskentelivät käännöksen parissa.[28]
Myös tuki SPARC-, MIPS-, PowerPC- ja ARM-suorittimille seurasivat.[26][29]
Kehitysprosessi
Torvalds johtaa edelleen Linuxin ohjelmointityötä. Linux on avoimen lähdekoodin ohjelmisto ja siihen voi kuka tahansa tehdä muutoksia. Mikäli haluaa omat muutoksensa Linuxin viralliseen versioon, ne tulee toimittaa Linux Kernel -postituslistalle, jolloin ohjelmakoodi kulkee Torvaldsin tai hänen luottohenkilöidensä kautta. Muutoksella on oltava sen tekijän allekirjoitus (Signed-off-by) ja se on toimitettava katselmoitavaksi asiaan liittyville henkilöille, joiden hyväksyntä tarvitaan muutoksen etenemiseksi ytimeen liittämiseen.[30] Ytimen kehitysmallissa ”portinvartijoina” toimivat alijärjestelmien ylläpitäjät lähettävät Torvaldsille muutoksia pääsarjan ytimeen liitettäväksi.[31]
Kehitysprosessin ohjeet seuraavat ytimen lähdekoodien mukana ja sisältävät joukon esimerkkejä hyvistä ja huonoista kehitystavoista.[32][33]
Ytimen kehitysprosessia käsitellään Eric S. Raymondin esseessä The Cathedral and the Bazaar, jossa sitä käytetään esimerkkinä ”basaarimallista” (vastakohtana ”katedraalimallille” kuten GNU Emacsin kehityksessä).[34] Kehitysprosessia on kuvattu jatkuvan kehityksen mallina (engl.perpetual development), jota käytetään myös useissa muissa (pääasiassa avoimen lähdekoodin) ohjelmistoprojekteissa.[35]
Ytimen version 2.6 kehityksen aikana Torvalds ja Andrew Morton yhdistivät ytimeen muutoksia 10 MB kuukaudessa.[36] Versioon 4.11 otettiin mukaan 12 546 muutosjoukkoa ja ydin kasvoi lähes 300 000 rivillä ohjelmakoodia.[37] Vuosien 2011 – 2012 aikana (ytimen versiot 3.1.0 – 3.5.0) ytimeen tehtiin päivittäin 10 600 uutta riviä, 8 100 riviä poistettiin ja 2 250 riviä muutettiin.[38] Muutoksia tuli 6,03 per tunti.[38]
Kesällä 2015 ytimen versiossa 4.1 oli yli 19,5 miljoonaa lähdekoodiriviä.[39] Linux-ytimen uudelleenkehittämisen arvosta on esitetty useita arvioita: maaliskuussa 2011 sen arvioitiin olevan 3 miljardia Yhdysvaltain dollaria ja kasvavan.[40][41]Linux Foundationin julkaiseman raportin mukaan kehitykseen on osallistunut yli 13 500 kehittäjää yli 1 300 yrityksestä.[42] Ytimen kokoon vaikuttaa kaikki sen tukemat arkkitehtuurit ja laitteisto jota se tukee: Greg Kroah-Hartmanin mukaan keskimääräinen kannettava tietokone käyttää noin 2 miljoonaa koodiriviä 5 000 tiedostosta toimiakseen kunnolla.[43]
Ydin on toteutettu pääasiassa C-kielellä.[44] Torvaldsin mukaan vaikeat ongelmat ytimen kehityksessä eivät ratkea ohjelmointikieltä vaihtamalla.[45] Isoimmat ongelmat ovat tyypillisesti laitteistotuessa kuten laiteajurit ja alustakohtaiset erot.[45] Eräät henkilöt ja projektit ovat pyrkineet kehittämään tukea C++:lla toteutetuille moduuleille mukaan lukien ajonaikaisen kirjaston, poikkeuskäsittelyn ja RTTI-tyyppimekanismin lisäämisen sekä pinon käsittelyn muutoksia.[46][47][48] C++:n käytössä käyttöjärjestelmän ytimessä on ongelmakohtia, joita neuvotaan välttämään.[49][50] Ytimeen on lisätty tukea Rust-kielellä ohjelmointiin asteittain ytimen versiosta 6.1 alkaen.[51][52] Ytimessä käytetään myös kääntäjien tukemia laajennuksia toimintoihin, jotka eivät ole kielen standardissa.[53]
Torvalds on vahvan staattisen tyyppijärjestelmän kannattaja, jonka johdosta hän aloitti vuonna 2003 sparse-ohjelman kehityksen.[54] Ytimen käyttötapauksissa kääntäjän oma tyyppitarkastus ei ole riittävä.[54]
Ytimen testaamisessa käytetään apuna useita tarkoitukseen kehitettyjä ohjelmia.[55] Ydintä testataan usein eri tavoin eri tavoitteiden kannalta kuten kehittäjätestaus, integraatiotestaus, regressiotestaus ja stressitestaus.[55] Ytimen yksikkötestaamiseen on kehitetty KUnit-kehys.[56][57]
Versiointi
Ydintä on aiemmin kehitetty parittomalla numerolla merkityssä versiohaarassa parillisten ollessa vakaita tuotantokäyttöön tarkoitettuja versioita (vrt. 2.2.x, 2.3.x, 2.4.x ja 2.5.x).[58] Nykyisin seuraavaan versioon tulevat muutokset ovat linux-next nimisessä kehityshaarassa ja versionumeroinnin erityismerkityksestä on luovuttu.[59] Monimutkaisten versionumeroiden kuten 2.6.39.4 sijaan pääversionumeroa muutetaan useammin kuten 4.0 3.20:n sijaan.[60][61] LTS-versioihin (Long Term Support) julkaistaan päivityksiä vielä uuden version jälkeen muutaman vuoden ajan.[62][63] Vuoden 2023 lopulla päätettiin lyhentää tukiaika kuudesta vuodesta kahteen tulevissa LTS-versioissa. LTS-versioita ei käytetä riittävästi ja ne aiheuttavat paljon työtä ylläpitäjille. Jonathan Corbetin mukaan työuupumus on riski vapaaehtoisille ylläpitäjille.[64][65]
Linux-next
Ytimen seuraavaan versioon tulevat muutokset sijoitetaan linux-next -nimiseen kehityshaaraan.[59] Muutoksien kehitys tapahtuu linux-next -haaran mukaiseen tilanteeseen.[66] Kehityshaarassa kypsyneet muutokset liitetään tulevaan julkaisuversioon ja konflikteja tai käännösongelmia aiheuttavat muutokset jätetään liittämättä.[67] Kehityshaarasta suoritetaan myös automaattista testausta ja havaituista ongelmista ilmoitetaan kehittäjille.[68] Eri konfiguraatioilla käännetyt ytimet käynnistetään ja ajetaan KVM-instansseissa.[68] Automaattinen testaus suorittaa myös sparse- ja coccinelle-ohjelmia.[68] Automaattista testausjärjestelmää on kehittänyt Fengguang Wu.[68]
Linux-staging
Linux-staging tai lyhyesti staging on versiohallinnan haara, jossa pidetään kehityksen alla olevia muutoksia.[69] Staging-haarassa pidettävät muutokset eivät ole vielä valmiita julkaistavaksi, mutta säilötään jotta niiden saatavuus ja testaaminen on helpompaa niistä kiinnostuneille kehittäjille.[69] Staging-haarassa olevat muutokset ovat suunnattu myöhemmäksi tulevaisuuteen kuin linux-next -haarassa olevat.[69] Staging-haaran perustamisesta ilmoitti Greg Kroah-Hartman 10. kesäkuuta 2008.[70]
Muut lähdekoodipuut
”Tip” on eräs lähdekoodipuu, jonka kautta muutokset päätyvät Torvaldsille.[71] Tip on nimetty sen ylläpitäjien mukaan: Thomas Gleixner, Ingo Molnar ja H. Peter Anvin.[71] Lähdekoodipuu sisältää eri haaroissa muutoksia, jotka on tarkoitettu liitettäväksi seuraavan liitosajankohdan myötä (”topic branch”), kiireisiä muutoksia (”urgent branch”) sekä myöhemmin valmistuvia muutoksia (”queue branch”).[71]
”arm-soc” -puu on Arnd Bergmannin perustama lähdekoodipuu, joka keskittyy järjestelmäpiirien tukeen ARM-arkkitehtuurilla.[71]
Suorittimet tukevat ytimen kernel-mode suoritustilassa erityiskomentoja ja sallii kaiken muistiavaruuden käytön.[73] Käyttäjän user-mode tilassa sallitut muistialueet ja käskyt ovat rajatumpia.[73] Suorituksen siirto käyttäjän ja ytimen tilojen välillä järjestelmäkutsujen yhteydessä kuluttaa huomattavasti aikaa.[73] Ytimet, joissa kaikki ajurit ovat kiinteästi osana ydintä ilman ladattavia moduuleja, ovat monoliittisia ytimiä, kun taas ladattavia moduuleja tukevia kuvataan toisinaan hybridiytimiksi.[73][74] Muita ladattavia moduuleja tukevia käyttöjärjestelmiä ovat esimerkiksi Solaris.[74] Linuxiin liittyvässä dokumentaatiossa monoliittisellä ytimellä on viitattu ytimeen, josta ladattavien moduulien tuki on kytketty pois käännösvaiheessa.[75]
Linux tukee moduulien kryptografista allekirjoittamista.[76] Linux-ytimessä toiminnot voidaan jakaa kaikille moduuleille tai vain GPL-lisenssiä käyttäville moduuleille, jota voidaan käyttää tunnistamaan ytimestä riippuvan toiminnon käyttö (derivative).[77][78] Suljetun lähdekoodin (ei-GPL) moduulien lataaminen lisää taint-merkinnän, joka kertoo kehittäjille että mahdollisen vian tapahtuessa ongelman syy voi olla tuntemattomassa lähdekoodissa.[79][80]
Koska ytimeen ladattavat moduulit toimivat ilman rajoituksia ytimen suoritustilassa niiden toteutuksessa on otettava huomioon samat seikat kuin muussa itse ytimessä olevaa ohjelmakoodiakin koskee.[81][82]
Moduuleja voidaan debugata etänä toiselta koneelta muun muassa Eclipse-kehitysympäristössä.[83]
Käyttäjät voivat ladata ja poistaa moduuleja ajon aikana muun muassa modprobe -komennolla.[84] Moduulit voidaan kääntää ja ladata ytimeen ajonaikana ilman uudelleenkäynnistystä.[84]
Esimerkki minimaalisesta moduulista, joka tulostaa viestin ytimen logiin:[84]
Moduuli ei toteuta main()-funktiota, vaan ytimen koodi kutsuu ladatun moduulin toimintoja.
Virtuaalinen tiedostojärjestelmä
Linux-ydin tukee virtuaalista tiedostojärjestelmää (VFS), joka sallii ytimen tukea useita konkreettisia tiedostojärjestelmiä.[85][86][87][88] Vastaava rakenne on toteutettu esimerkiksi SunOS-käyttöjärjestelmässä.[86]
Ytimen järjestelmäkutsujen alla sijaitsee VFS-kerros, jonka alla sijaitsevat varsinaiset tiedostojärjestelmät.[86] Tiedostojärjestelmien alla sijaitsee lohkopohjainen kerros, jonka alla sijaitsevat laiteajurit.[86] VFS-kerros on abstraktiokerros, joka erottaa POSIX-yhteensopivan rajapinnan tiedostojärjestelmäkohtaisista toteutuksista.[86]
Keskeisiä olioita VFS:n toteutuksessa ovat:[88][89]
Superblock sisältää korkean tason metatiedon tiedostojärjestelmästä, josta on useita kopioita levyllä varmistuksen vuoksi ja sisältää käyttöön liitetyn (engl.mount) tiedon.[89]Dentry sisältää yhden hakemistokomponentin (yksi osa hakemistopolkua) hierarkkisessa rakenteessa, joka säilytetään vain muistissa eikä tallenneta levylle.[89][90]Inode sisältää metatietoa yhdestä tiedostosta pois lukien sen nimen ja varsinaisen sisällön: inode voi viitata myös muun tyyppisiin tietoihin kuten laitteisiin tai muistiin.[89][91] Yksittäiseen inodeen voi olla useita viittauksia kuten kovia linkkejä (engl.hard link).[88]
VFS tarjoaa toiminnot käyttäjäsovelluksille sekä ytimen sisäisen abstraktiorajapinnan ytimen toiminnoille.[88]
VFS:n avulla ydin tukee lohkopohjaisia tiedostojärjestelmiä (Btrfs, ext2 / ext3 / ext4, JFS, XFS, ISO 9660, UDF)[92][93][94], verkkopohjaisia (NFS, coda, AFS, SMB, 9P), yhdistelmäjärjestelmiä (overlayfs, unionfs), RAM-levyn kanssa käytettäviä (tmpfs, ramfs[95]) ja eritystarkoituksiin suunniteltuja (debugfs, sysfs[96]). Erityisesti flash-muistin kanssa käytettäväksi suunniteltuja ovat f2fs ja ubifs.[97][98]zonefs on yksinkertainen alueita (zone) tukeva tiedostojärjestelmä, joka ei piilota sekventiaalista kirjoitustarvetta POSIX-rajapinnan taakse ja on siten lähempänä suoraa lohkokirjoitusta.[99] NILFS2 on logirakenteinen tiedostojärjestelmä, joka tukee jatkuvia tilannekuvia (snapshot).[100] Lisäksi tuettuja ovat klustereissa käytettävät tiedostojärjestelmät kuten GFS ja OCFS2.[101][102]Ceph on hajautettu tiedostojärjestelmä, joka tukee POSIX-yhteensopivaa käyttöä.[103]
Linux laajentaa alkuperäisen Unixin periaatetta käyttää tiedostokahvoja (”Everything is a file”) myös muun muassa ajoitustapahtumiin, verkkorajapintaan sekä uudenlaisiin laitteisiin, joita ei ollut olemassa Unixia kehitettäessä.[104][105] Käsitettä on laajennettu myös prosessien käsittelyyn.[106]
Moniajo ja rinnakkaisuus
Linux-ydin tukee ulkoista moniajoa (irrottava/keskeyttävä moniajo, pre-emptible), sekä ytimen sisäinen moniajo on mukana 2.6-sarjassa, jota on myöhemmin laajennettu nk. vapaaehtoiseen moniajoon.[107][108][109] Käyttäjäavaruuden ohjelmat ovat aina keskeytettävissä ja ytimen sisäiseen moniajoon on eri menetelmiä.[110] Kun ydin on käännetty sisäiseen moniajoon suoritus voidaan keskeyttää lähes missä vain tilanteessa.[111] Ytimen sisäinen moniajo voidaan jättää käännösaikana pois eri tarkoituksia varten.[108] Vuoronnus käyttää vuoronnusalueita (scheduling domains) ja useampia suoritusjonoja prosesseille, jotka odottavat ajovuoroaan.[112]
Ydin tukee useita menetelmiä ja algoritmeja tehtävien ajoituksen hallintaan.[113][114] Ytimen versiossa 2.6.23 lisätty CFS korvasi O(1) ja RSDL-vuorontajat.[115][116][117] Ytimeen on kehitetty tuki ladattaville skedulereille eri käyttötarpeita varten.[118][119] EEVDF-vuorontaja on kehitetty vaihtoehdoksi CFS-vuorontajalle. EEVDF parantaa latenssiherkkien ohjelmien suoritusta ja poistaa heuristiikkaa, joka aiheuttaa CFS-vuorontajassa vaikeuksia. EEVDF käsittelee prioriteetin kuten CFS, mutta laskee myös aikarajan (engl.deadline), jolloin prosessin on saatava suoritusaikaa.[120][121]
Ytimen sisäinen moniajo tunnistaa mm. spinlock-lukituksen käytön ytimen sisäisessä moniajossa.[111] Ydin käyttää runsaasti suoritinkohtaisia per-CPU tietorakenteita, jotka parantavat muun muassa välimuistin käytön tehokkuutta, mutta joiden käytössä sisäinen moniajo voidaan kytkeä hetkellisesti pois käytöstä.[124][125]
Sisäistä moniajoa voi konfiguroida eri käyttötarkoituksiin soveltuvaksi.[126]Reaaliaikakäyttöön tarkoitettu Real-Time Linux lisää omia vaihtoehtoja ytimen sisäiseen moniajoon.[126][127] Reaaliaikakäyttöön on suunnattu SCHED_DEADLINE-vuoronnus vaihtoehtona aiemmille SCHED_FIFO- ja SCHED_RR-käytännöille.[128][129]
Ytimen NO_HZ -optio vähentää ajoituksen vaatimia herätteitä tehostaen virrankäyttöä ja suorituskykyä tietyissä tilanteissa.[130][131]
Vuoronnukseen on kehitetty virrankäytön (energiatarpeen) ja lämpörajoitusten käsittely.[132][133][134] Vuoronnus käsittelee myös ytimien maksimikapasiteetin niiden suorituskyvyn mukaan epäsymmetrisessä moniprosessoinnissa kuten ARM big.LITTLE -järjestelmissä.[135]
Vuoronnus käsittelee saman ytimen säikeiden (SMT) lisäksi saman suorittimen ytimiä siten, että suorittimella ajettavat tehtävät voidaan ryhmitellä sen mukaan, voivatko ne jakaa saman suoritinytimen (core scheduling). Ratkaisulla vain keskenään luotetut säikeet voivat jakaa saman suoritinytimen resursseja, kun yhteen ryhmään kuuluvat eivät luota toiseen ryhmään. Käyttötapauksena ovat pilvipalvelut, joissa samalla tietokoneella voi olla samanaikaisesti monen eri asiakkaan tehtäviä, joiden välillä on oltava suojaus haavoittuvuuksien varalta, mutta asiakkaan omien tehtävien välillä suojaus voi olla pienempi ja tehtäviä voidaan ajaa rinnakkain samalla ytimellä.[136][137][138][139]
Keskeytyskäsittelyn vuoksi ytimessä on keinoja siirtää suoritusta. Keskeytyksen sattuessa tietokoneen suoritin pysäyttää tekemänsä asian, jolloin kutsutaan ytimessä olevaa keskeytyskäsittelyä. Ytimen keskeytyskäsittelystä on palattava nopeasti, jonka vuoksi suoritus siirretään. Laitteistokeskeytyksien sijaan on käytössä työjonoja, perinteisen Unixin kaltaisia ohjelmistokeskeytyksiä ("alempi puolisko") sekä taskletit, joista halutaan eroon.[140][141][142]
Vuoronnus tukee NUMA-muistiarkkitehtuuria, jossa tietokoneen muistiväylän viive ja kaista riippuvat siitä, miten kaukana suoritin tai väylä on muistisolusta. Ydin pyrkii sijoittamaan suoritettavan tehtävän suorittimelle, joka on lähinnä suoritettavan tehtävän tarvitsemaa muistialuetta.[143][144][145]
OOM Killer, joka tappaa prosessin, jotta järjestelmä voi jatkaa normaalisti kun saatavilla oleva muisti on varattu eikä normaalilla tavalla voi palauttaa muistia käyttöön (reclaim)[148][149][150][151]
muistin ja muiden resurssien käyttörajat (cgroups)[152]
Ydin pyrkii pitämään muistissa tietoa, jota käyttäjän ohjelmat haluavat käyttää. Levyltä lukeminen on verrattain hidasta, joten vapaata muistia käytetään välimuistina levyltä luetuille tiedoille ja järjestetään viimeksi käytetyn mukaan (Last Recently Used, LRU). Muistin ollessa täynnä puskureista vapautetaan tilaa, sekä muistia voidaan sivuttaa levylle. MGLRU (Multigenerational LRU) pitää useampia listoja järjestämiseen tyypin ja iän mukaan.[151][168][169]
Ydin tukee muistin pakkausta läpinäkyvästi (RAM-levyn kanssa zram-ominaisuudella, sivutuksen kanssa zswap-ominaisuudella)[170][171] sekä muistin salausta läpinäkyvästi (AMD SME, SEV)[172]. Pakkausta muistissa voidaan käyttää viivästyttämään levylle sivutuksen tarvetta vähentäen levy-IO:n tarvetta.[173]
Ydin tukee jaettua muistia System V- ja POSIX-rajapintojen avulla.[174] Muistinhallinta tukee avainpohjaista suojausta.[175]
Ytimen muistisivujen käsittelyyn on otettu käyttöön foliot. Foliot voivat kattaa yksittäisen sivun tai useamman sivun yhtenäisen alueen (yhdistelmäsivut). Foliot tukevat eri kokoisia muistisivuja arkkitehtuureilla, jotka tukevat niitä. Folioiden käytöllä parannetaan suorituskykyä ja yksinkertaistetaan käsittelyä, sekä parannetaan joustavuutta.[176][177][178][179]
Muistivarauksen hallintaan on kehitetty kolme konfiguroitavaa vaihtoehtoa: SLAB, SLOB ja SLUB.[180]
SLUB, yksinkertaistettu SLAB[185][186], esitelty vuonna 2007 ja tarkoitettu korvaamaan SLAB[187]
SLOB, alkuperäisen Unixin tyylinen, joka on muistikäytön kannalta hyvä mutta skaalautuu huonosti ja kärsii fragmentaatiosta[188]
Muistivaraukseen on esitetty eri vaihtoehtoja, mutta niitä ei ole hyväksytty ytimeen ja ytimessä käytetyistä SLOB on poistettu versiossa 6.4.[187][189] SLAB on poistettu versiossa 6.8 ja jäljelle jäi SLUB, jonka myötä ytimen toimintoja on voitu yksinkertaistaa.[190]
Ytimen käyttämää muistimallia on kuvattu ISO/IEC artikkelissa P0124R4.[191]
Laiteajurit
Linux-ydin tukee usean prosessorin järjestelmiä, ytimen sisäistä moniajoa, asynkronisia keskeytyksiä, ajoittimia ja yksittäistä laitetta voi yrittää käyttää useampi prosessi samaan aikaan: laiteajureja on voitava käyttää usesta kontekstista yhtä aikaa (reentrant).[192][193] Laiteajurit voidaan kääntää kiinteästi osaksi ydintä tai ajonaikana ladattaviin moduuleihin.
Ajurit toteuttavat mekanismin (tarjotut ominaisuudet), eivät käytäntöä (miten ominaisuuksia voi hyödyntää) Unix-tapaan.[194]
Yksinkertaisimmillaan ajurit käyttävät vain IO-muistialueita, mutta useimmat laitteet vaativat monimutkaisempaa käsittelyä.
Laiteajurit ovat tapahtumapohjaisia, jotka reagoivat järjestelmäkutsuihin, laitteistokeskeytyksiin ja niin edelleen. Linuxissa on mahdollista käsitellä laitteita kuten teollisuus-IO -kortteja IO-porttien kautta ioperm rajapinnan avulla myös käyttäjäavaruudesta.[195][196][197]
Linux ydin tukee VFIO-kehystä (Virtual Function I/O, Versatile Framework for userspace I/O[198]) IOMMU-toiminnon kanssa.[199][200] VFIO mahdollistaa IOMMU:n kanssa turvalliset käyttäjäavaruuteen sijoitetut laiteajurit ”läpiviennillä” muun muassa virtuaalikoneille.[199][201][198]
LKDDb (Linux Kernel Driver DataBase) on projekti, joka pyrkii kokoamaan kattavan tietokannan Linuxin tukemasta laitteistosta ja protokollista.[202] Tietokanta sisältää laitteiden tunnisteet, ytimen konfiguraation ja ajurin tiedostonimen.[202] Käyttäjät voivat lisätä omia laitetietoja.[203]
Linux Integrity Measurement Architecture (eli IMA) on alijärjestelmä, jota voidaan käyttää havaitsemaan tiedostomuutoksia (vahingossa tai haitallisesti tehtyjä muutoksia).[221][222] IMA:n tarkoitus vakuuttaa etänä, että järjestelmässä suoritetaan vain tunnettuja ja hyväksyttyjä ohjelmia.[223] IMA on vastuussa tiivisteen laskemisesta ennen lataamista ja raportoi sen eteenpäin. IMA-järjestelmään kuuluva Extended Verification Module (EVM) havaitsee muutoksia ja liittyy SELinux- ja Linux Security Modules (LSM)-kehyksiin. EVM tekee toisen tiivisteen tiedostojen attribuuteista.[224][225]
seccomp on mekanismi, jolla voi rajata pääsyä järjestelmäkutsuihin hiekkalaatikoiden tekoa varten.[226][227]
Landlock on vallitsevien oikeuksien (kuten globaali tiedostojärjestelmäpääsy) rajoittamiseen suunnattu pinottava turvamoduuli (LSM), jota voidaan käyttää hiekkalaatikoiden tekemiseen.[228]
Lisäksi on mahdollista käyttää useita käyttäjäavaruudessa toimivia menetelmiä kuten D-Bus, jotka perustuvat daemon-prosessien palveluihin.
Muita ratkaisuja ovat muun muassa kehityksen alla oleva bus1 ja Androidin käyttämä binder.[231][232]
Virheenjäljitys
Linux-ydin tukee kahdenlaisia debuggeriohjelmia ytimen virheenjäljitykseen: kdb (komentorivillä, ei lähdekooditason debuggausta) ja kgdb (etänä, lähdekooditason debuggaus).[233]
kdb tukee mm. muistin ja rekisterien tilojen tutkimista ja pysäytyskohtien asettamista. kgdb käytetään GNU Debuggerin kanssa.[233]
Lisäksi ydin tukee suorituksen seurantaan muita menetelmiä kuten ftrace, strace[234], ptrace()[235] ja kprobe.[236]
Suorituskyvyn profilointiin on olemassa muun muassa perf laskurit, jota ovat edeltäneet oprofile, perfctr ja perfmon2.[237][238] Kerättyjä laskurien tietoja käsitellään muun muassa perf-työkaluilla.[239]
Toimintojen sanitointiin on useita seurantaominaisuuksia kuten muistiviittauksiin (KASAN), epämääriteltyyn toimintaan (UBSAN), rinnakkaisuuteen (KCSAN) ja alustamattoman muistin käyttöön (KMSAN).[240][241][242][243][244]
Kernel Electric-Fence (KFENCE) on näytteistykseen perustuva muistiturvallisuuden seuraaja, jota on suunniteltu käyttöön myös tuotantoympäristöissä.[245]
Virtualisointi ja säiliöinti
Ydin tukee hypervisor-virtualisointia kuten KVM sekä säiliöintiä.[246][247][248]Xen-tuki sekä isäntänä (Dom0) että vieraana (DomU) on ollut ytimessä versiosta 3.0 lähtien.[249][250] Lisäksi User-mode Linux mahdollistaa ytimen ajamisen käyttöjärjestelmän prosessina (Linux-on-Linux, Linux-on-Windows).[251]Cooperative Linux (CoLinux) on virtualisointiin perustuva projekti, jolla Linux-ydintä voidaan pienen virtuaalikoneen avulla suorittaa Windowsin rinnalla.[252]Jailhouse on turvakriittisiin järjestelmiin tarkoitettu virtualisointi Linuxille.[253] Lisäksi ACRN-hypervisorille on tukea.[254][255]
Linuxia voi käyttää Hyper-V virtualisoinnissa juuriosiona, jolla on suora pääsy laitteistoon ja joka hallinnoi muun muassa muistinkäyttöä, laitepääsyä ja levyn käyttöä.[256]
Rajapinnat ja alijärjestelmät
Direct Rendering Manager (DRM) on monimutkaisten grafiikkalaitteiden kuten ohjelmoitavien grafiikkasuorittimien tukemiseen suunnattu rajapinta.[257]
CPUFreq on alijärjestelmä, joka käsittelee suorittimen suorituskyvyn muutokset. Alijärjestelmässä on ydin, säätimet ja ajurit. Ydin on yhteinen kehys eri komponenteille, säädin toteuttaa algoritmit suorittimen kapasiteetille ja ajurit käsittelevät laitteiston tietoa. Laitteisto kertoo ACPI P-tiloja, jotka ajurit välittävät säätimille ja ajurit muuttavat P-tiloja säätimien pyyntöjen mukaan. Säätimiä on toteutettu erilaisia eri käyttötarpeita varten. Alijärjestelmä tukee myös kellotaajuuden muuttamista kun laitteisto tukee sitä.[259]
Media-alijärjestelmä on suunnattu videon ja radion striimauslaitteisiin kuten videokameroille, analogisille ja digitaalisille TV-viritinkorteille, AM/FM radiovastaanottimille, ohjelmistolliselle radiolle (Software Defined Radio, SDR), videokaappaukselle, pakkauslaitteille ja kauko-ohjaimille.[260]Video 4 Linux on videokaappauskorteille suunnattu. Rajapinnasta käytetään lyhennettä V4L2, koska rajapinnan ensimmäinen versio on korvattu joustavammalla.[261][262]
DMA-BUF on alijärjestelmä, joka mahdollistaa puskureiden jakamisen useiden laiteajureiden ja alijärjestelmien välillä, sekä asynkroniseen laitteistotukeen. Merkittävä käyttäjä on DRM-alijärjestelmä, joka jakaa puskureita prosessien, kirjastojen ja alijärjestelmien kuten V4L2:n kanssa.[263][154][155]
IO_uring on asynkronisen IO:n rajapinta, jonka suunnittelutavoitteina on soveltuvuus muihinkin kuin lohko-orientoituneisiin tallennuslaitteisiin.[264]IO_uring on suunniteltu korvaamaan vanha AIO-rajapinta.[265]IO_uring ratkoo vanhan rajapinnan ongelmakohtia ja muun muassa tukee puskurointia, toimii deterministisesti (ei pysäytä) ja vähentää muistikopioita.[264]IO_uring muuttaa sovelluksien suunnittelua ja sen käyttöä suunnitellaan myös muihin tarpeisiin.[266]
kexec on ytimen järjestelmäkutsu, jolla voi vaihtaa suoraan toiseen ytimeen ilman järjestelmän täyttä uudelleenkäynnistämistä, joka nopeuttaa suurien palvelimien päivitystä.[267][268]
Device Mapper (DM) on kehys loogisten taltioiden ja fyysisten lohkojen välissä, jota useammat ylemmän tason toiminnot kuten LVM käyttävät.[270][271] Kehystä käytetään muun muassa tilannekuvien tallentamiseen.[272] Device Mapper Multipathing mahdollistaa useita fyysisiä IO-väyliä palvelinten ja FCP/SCSI-laitteiden välillä ja tukee muun muassa uudelleen reitittämistä (failover) ja kuormituksen tasaamista.[273]
Ytimessä on tuki salaukselle, jonka pääkonsepteja ovat luottamuksellisuus, tietojen eheys ja lähteen varmentaminen.[274][275]
Käyttökohteita ovat muun muassa levysalaus (dm-crypt), verkkoprotokollat (IPsec, Bluetooth), tiedostojärjestelmät ja laiteajurit sekä useita muita.[275] Kernel Key Retention Service ("keystore") on ytimen palvelu salausavainten ja autentikaatiovaltuuksien hallintaan. Tietoja käytetään esimerkiksi salattujen tiedostojärjestelmien kanssa, mutta lisäksi käyttäjäavaruuden ohjelmat voivat tallentaa siihen avaintietoja, jolloin ohjelmat eivät tarvitse käyttäjäavaruudessa erillistä "agenttiohjelmaa".[276][277][278][279]
NAPI ("New API") on laajennus laiteajurien pakettikäsittelyyn. NAPI voi vaihtaa keskeytykset pollaavaan kun tiedetään että paketteja on odottamassa, sekä verkkoalijärjestelmä voi tarvittaessa pudottaa paketteja ennen kuin ne päätyvät lisäkäsittelyyn.[280][281][282] Tavallisesti verkkorajapinta tekisi keskeytyksen kun paketti saapuu, ydin käsittelisi keskeytyksen suorittaisi paketin käsittelyn.[282] Kiireisissä järjestelmissä tämä tuottaisi paljon keskeytyksiä, joiden käsittely vaatisi paljon suoritinaikaa.[282] NAPI:n kanssa keskeytys vaihdetaan taajaan pollaamiseen kun tiedetään, että paketteja on aina odottamassa ja odottavat paketit voidaan käsitellä kaikki kerralla.[282]
netfs on ytimen sisäinen apukirjasto, joka on suunniteltu avustamaan verkkotiedostojärjestelmien yhteisissä toiminnoissa.[283][284]
Ytimen userfaultfd-järjestelmäkutsu mahdollistaa sivutuksen käsittelyä käyttäjäavaruudessa.[285][286] Toiminto on kehitetty auttamaan käynnissä olevien virtuaalikoneiden siirtoa fyysiseltä koneelta toiselle.[287]
"Accel" on laskentakiihdyttimille suunnattu alijärjestelmä, joka tukee muun muassa ASIC-piirejä, järjestelmäpiirejä ja grafiikkasuorittimia. Laskentakiihdyttimet ovat tyypillisesti suunnattu koneoppimiseen ja syväoppimiseen, mutta alijärjestelmä ei ole rajattu näihin.[288] Ennen uuden alijärjestelmän lisäämistä näitä laitteita tuettiin DRM-alijärjestelmässä.[289][290]
Live patching
Ytimessä on tuki ohjelmakoodin päivityksille ilman järjestelmän tai sovelluksien uudelleen käynnistämistä.[291][292]Live patching -ominaisuus on julkaistu ytimen versiossa 4.0.[293] Tyypillinen käyttökohde ovat tietoturvapäivitykset esimerkiksi järjestelmän ollessa raskaan kuormituksen alla.[292][294]
Ominaisuus on yksi kolmesta ominaisuudesta, jotka voivat muuttaa suorituskohdetta ajonaikaisesti: kaksi muuta ovat kprobe ja ftrace.[294] Päivitykset jaetaan ytimen moduuleina, joissa on uusi toteutus korvattavasta toiminnosta.[294][291]
Ominaisuus on tarkoitettu kriittisiin päivityksiin ympäristöissä, joissa on vaatimuksia palveluiden saatavuudelle.[292]
Konfigurointi
Ennen käännöstä tehtävä konfigurointi tehdään Kconfig/kbuild-työkalulla (huom: eri kuin KDE-projektin KConfig). Kconfigissa on makrokieli, jonka avulla asetetaan käännöksessä mukana olevat ominaisuudet ja luodaan tarvittavat tiedostot ohjelmointikielen kääntäjälle. Käännösvalinnat voidaan esittää valikkona, josta voi valita muun muassa laiteajureita ja useita muita asetuksia.[295][296][297] Esimerkiksi Androidia varten ydin voidaan konfiguroida alhaisen muistimäärän järjestelmää varten.[298] Eri jakeluversiot voivat käyttää eri ytimen konfiguraatioita tarkoituksensa mukaisesti.[299]
Käynnistyksen yhteydessä ytimelle voidaan antaa komentoriviparametreja käynnistyslataajan kautta. Parametrit voidaan asettaa käynnistyslataajan omaan konfiguraatioon.[300][301]
Käynnissä olevan ytimen asetuksia voidaan muuttaa sysctl-toiminnon avulla käyttäjäavaruudesta.[302][303][304]
Linux on historian eniten eri laitteistoalustoja tukeva käyttöjärjestelmä.[305]
Linux tukee NUMA-muistiarkkitehtuurin tietokoneita ja toteuttaa järjestelmäkutsuja järjestelmien hallintaan.[306] Tuki on ollut ytimessä versiosta 2.5 lähtien ja on parannettu jälkeenpäin.[307][308]
64-bittisten alustojen yleistymisestä johtuen on keskusteltu 32-bittisten alustojen tulevaisuudesta ja tuesta: sulautetuissa järjestelmissä 32-bittisiä versioita käytetään yhä paljon.[312]
Linux tukee Open Firmware Device Tree (DT) määrittelyjä[313] sekä ACPI Device Tree toimintoja.[314] DT-määrittely on laajennettu yleiskäyttöiseksi kaikille alustoille [313]UEFI-tuen avulla ydin tukee sen ajonaikaisia palveluita.[315]
Linux tukee hotplug-toimintoja ytimen versiosta 2.4 lähtien: oheislaitteiden lisäksi suorittimet ja muisti on mahdollista liittää tai poistaa käytön aikana.[316][317][318] Suorittimen hotplug-toiminto oli suunniteltu alun perin vikaantuneen laitteen poistamiseen järjestelmästä, mutta se on löytänyt käyttöä myös energian käytön hallintaan sekä virtualisoiduissa ympäristöissä vieraskäyttöjärjestelmille.[319]
Lisensointi
Linuxin varhaiset versiot oli julkaistu Torvaldsin itse kirjoittamalla lisenssillä, joka ei sallinut ytimen levitystä rahaa vastaan koska halusi sen pysyvän ilmaisena eikä niinkään vapaan ideologian mukaisena.[17][16] Eräiden tahojen toivoessa voivansa kerätä Linuxin levittämisestä syntyvät kustannukset Torvalds päätti muuttaa lisenssiä ja totesi rahaan liittyvän rajoituksen olleen virhe.[17]
Linus ilmoitti version 0.12 julkistuksen yhteydessä siirtyvänsä käyttämään GNU GPL -lisenssiä 1. helmikuuta1992 lähtien.[18] Ytimen nykyinen lisenssi on GPL versio 2 ja Torvalds on sanonut vastustavansa siirtymistä versioon 3 sen lisäämien käyttörajoituksien vuoksi.[19]
Torvalds on kuvaillut päätöstään julkaista Linux-ydin GPL-lisenssillä parhaaksi tekemäkseen asiaksi.[20]
Lisenssiä on täsmennetty myös, että se on ainoastaan GPL versio 2.0 ja ettei ytimen lisenssi koske ohjelmia, jotka vain käyttävät ytimen järjestelmäkutsuja.[5][320][321][322] Ytimessä on siirrytty käyttämään Software Package Data Exchange (SPDX) -tunnisteita toistuvan tekstin vähentämiseen ja helpompaan tarkistamiseen automaattisesti.[320]
Koska Linux-ydin käyttää nimenomaan GNU GPL versiota 2 (GPLv2), sitä eivät sido lisenssiversion 3 rajoitukset, joita Torvalds on vastustanut ja on ilmoittanut, ettei Linux-ydin siirry versioon 3.[19][323][324] Torvalds arvosteli lisenssiversion 3 tiukkaa linjaa kaupallisiin ja omisteisiin ohjelmistoihin.[323]
Linux-libre on Linux-ytimeen perustuva ydin, josta on poistettu ei-vapaat (omisteiset) firmware-osiot.[325]
lisäsi ISA-PnP-, USB- ja PCMCIA-tuen, sekä tuen yli 2 GiB tiedostoille (LFS) ja ext3- ja ReiserFS-tiedostojärjestelmät (ReiserFS versiossa 2.4.1). Versio 2.4.6 lisäsi Bluetooth-tuen.
lisäsi ytimeen Kernel Modesetting (KMS) tuen näytönohjaimille, joka yksinkertaistaa X Window Systemin ajureita; suorittimien tukea tehostettiin 4096:n suorittimen laitteiden tukemiseksi[332]
Linux 2.6.38
maaliskuussa 2011
lisäsi läpinäkyvän tuen suurille muistisivuille (engl.transparent huge pages, THP), joka aiemmin oli hugetlbfs-kirjastoon sidottu[333][334][156]
Linux 3.0
heinäkuussa 2011
Torvalds ilmoitti muuttavansa versionumeroa Linuxin 20-vuotispäivien kunniaksi.[335]
lisäsi tuen ytimen korjauspäivityksille ilman tarvetta koko järjestelmän uudelleenkäynnistykselle (live patching), tuki Intelin Skylake-arkkitehtuurille, tuki Intelin Quark-piireille, tuki PlayStation 3 -konsolille, tuki äänelle DisplayPort-väylän kautta AMD:n Radeon-ohjainten avoimissa ajureissa.[293]
Linux 4.14
marraskuussa 2017
uudistuksia ovat muun muassa viisitasoinen muistisivujen käsittely, joka nostaa maksimimuistimäärän teratavuista petatavuihin.[340][341] Muita uudistuksia ovat heterogeeninen muistikäsittely (HMM), ORC pinonkäsittely, AMD:n muistisalaus, nolla-kopion verkkokäsittely ja säikeistystuki cgroup-ryhmille.[342][343][160]
Linux 5.1
toukokuussa 2019
uusi asynkronisen IO:n rajapinta io_uring, pidfd-rajapinta signaalien käsittelyyn[344]
Linux 5.2
heinäkuussa 2019
Sound Open Firmware (SOF) -tuki, uusi mount -rajapinta[345][346]
↑Chapter 11 Swap Managementkernel.org. ”Strictly speaking, Linux does not swap as “swapping” refers to coping an entire process address space to disk and “paging” to copying out individual pages. Linux actually implements paging as modern hardware supports it, but traditionally has called it swapping in discussions and documentation.” Viitattu 11.3.2024. (englanniksi)
↑Hermann Härtig & Michael Hohmuth & Jochen Liedtke & Sebastian Schönberg & Jean Wolter: The Performance of µ-Kernel-Based Systemsos.inf.tu-dresden.de. Viitattu 9.8.2019. (englanniksi)