Amultzo baten azpimultzo guztiek osatzen duten multzoari potentzia-multzo edo A multzoaren parteen multzo deritzo, eta , P(A), ℘(A) edo 2A adierazten da. Adibidez, A = {x, y, z} izanik, bere azpimultzoak ∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z} eta {x, y, z} dira, eta potentzia-multzoa = {{x, y, z}, {x, y}, {x, z}, {y, z}, {x}, {y}, {z}, ∅}.
Propietateak
Potentzia-multzoa gutxienez azpimultzo batez osatuta dago. Izan ere, multzo hutsa multzo guztien potentzia-multzoan dago.
Multzo bat beti da bere potentzia-multzoaren elementu.
Multzoa infinitua baldin bada, bai zenbakarria bai zenbakaitza, potentzia-multzoa infinitu zenbakaitza izango da.
Zenbaki arrunten potentzia-multzoa bijekzio bidez zenbaki errealen multzoarekin lotu daiteke, esaterako.
Kardinala
Jatorrizko multzoa hutsa ez bada, hurrengoa betetzen da: multzoaren parteen multzoko elementuen kopurua jatorrizko multzoaren berreketaren emaitza da, hots, S multzo finitu baten potentzia-multzoaren kardinala 2 ber S-ren de kardenala da.
Potentzia-multzoaren kardinalaren erlazioa ondorioztatzeko modu bat koefiziente binomialen bidez da. S multzoak n elementu baditu, k elementu dituzten azpimultzoen kopurua, C (n, k) zenbaki konbinatorioaren berdina izango da. S multzoaren azpimultzo batek 0 elementu izan ditzake gutxienez, eta n gehienez, eta, beraz,
Potentzia-multzoaren kardinala multzoarena baino handiagoa da beti, Cantor-en Teorema esaten duen moduan. Honen ondorioz, ez da existitzen aplikazio bijektibo bat multzo baten eta bere potentzia-multzoaren artean. Beraz, jatorrizko multzoa eta bere potentzia multzoa ez dira ekipotenteak.