x
2
− − -->
2
y
2
=
1
{\displaystyle x^{2}-2y^{2}=1}
, ekuazioaren zenbait ebazpen diofantoar.
Pell-en ekuazio diofantoarra gisa honetako ekuazioa da:
x
2
− − -->
p
y
2
=
1
{\displaystyle x^{2}-py^{2}=1}
, zeinetan
p
{\displaystyle p}
zenbaki arrunt eta ez karratua den. Ekuazio diofantoarren helburua, zenbaki oso en gaineko ebazpenak ( ebazpen diofantoarrak ) determinatzea da, existitzen diren kasuan.
Pellen ekuazioaren:
p
{\displaystyle p}
, parametroaren balioa edozein zenbaki ez karratu izanik:
(
x
,
y
)
=
(
1
,
0
)
{\displaystyle (x,y)=(1,0)}
, eta
(
x
,
y
)
=
(
− − -->
1
,
0
)
{\displaystyle (x,y)=(-1,0)}
beti dira ebazpen diofantoarrak: ebazpen neutroak izenda daitezke. Horregatik
p
{\displaystyle p}
zenbaki ez karratuarentzat, helburua: neutroak ez diren ebazpen diofantoarrak determinatzea da existitzen diren kasuan.
Pell-en ekuazio diofantoarraren problemak bi dira beraz:
p
{\displaystyle p}
zenbaki ez karratua emanik, ebazpen ez neutrorik ba ote duen determinatzea, eta duen kasuan ahal diren ebazpen guztiak determinatzea.
Irudian
x
2
− − -->
2
y
2
=
1
{\displaystyle x^{2}-2y^{2}=1}
, ekuazioaren zenbait ebazpen diofantoar eta ez neutroak, gorriz adierazi dira:
(
x
,
y
)
∈ ∈ -->
{
(
3
,
2
)
,
(
3
,
− − -->
2
)
,
(
− − -->
3
,
2
)
,
(
− − -->
3
,
− − -->
2
)
}
{\displaystyle (x,y)\in \{(3,2),(3,-2),(-3,2),(-3,-2)\}}
Historia
Ekuazio honen ikerketa antzinakoa[ 1] da, eta ebazpena XVIII. mendean gauzatuko da.
Badirudi Euler -en nahaste baten ondorioz atxikitzen zaiola ekuazio hau Pell -i. Badirudi Eulerrek Wallis aipatu beharrean Pell aipatu zuela.
Evariste Galois (1811-1832)
Dirichlet -ek Pell en ekuazioa bateragarria dela frogatuko du. Hots:
p
{\displaystyle p}
edozein zenbaki arrunt ez karraturentzat, Pellen ekuaziak beti duela ebazpen ez neutro bat (
y
≠ ≠ -->
0
{\displaystyle y\neq 0}
), (usategiaren printzipioa erabiliz).
Pell-en ekuazioak ebazpen ez neutro bat baldin badu, badu ebazpen minimo bat, eta ebazpen minimo honek ekuazio diofantikoaren ebazpen guztiak determinatzen ditu: oinarrizko ebazpena izendatzen da ebazpen minimo hau.
Oinarrizko ebazpena determinatzeko metodoa, zatiki jarraien bidez ebatziko dute: Euler(1748), Lagrange (1768) eta Galois (1828)-ek: zenbaki irrazional bikarratuak , zatiki jarraien bidezko garapenarekiko karakterizatuz.
Oinarrizko ebazpena
p
{\displaystyle p}
zenbaki ez karratua emanik, Pell-en ekuazioa:
x
2
− − -->
p
y
2
=
1
{\displaystyle x^{2}-py^{2}=1}
, bateragarria dela frogatzen du Dirichlet-ek. Ondorioz ebazpen diofantoar ( ez neutroa ) bat existitzen da. Ekuazioaren ebazpenak,
x
2
− − -->
p
y
2
=
1
{\displaystyle x^{2}-py^{2}=1}
hiperbolan daudenez, ebazpen diofantoar bakar bat existitzen da lehen koadrantean, jatorrira distantzia minimoa duena: ebazpen minimo hau izango da: Oinarrizko ebapena,
(
x
,
y
)
=
(
a
,
b
)
{\displaystyle (x,y)=(a,b)}
, adieraziko da, hots:
a
2
− − -->
p
b
2
=
1
{\displaystyle a^{2}-pb^{2}=1}
. Irudian agertu den kasuan:
x
2
− − -->
2
y
2
=
1
{\displaystyle x^{2}-2y^{2}=1}
, ren oinarrizko ebazpena:
(
a
,
b
)
=
(
3
,
2
)
{\displaystyle (a,b)=(3,2)}
.
p
=
[
a
0
,
a
1
,
a
3
,
.
.
.
,
a
n
,
.
.
.
]
{\displaystyle {\sqrt {p}}=[a_{0},a_{1},a_{3},...,a_{n},...]}
Zatiki jarraien bidezko garapena izango da.
Zatiki jarraien bidezko garapenaren
n
{\displaystyle n}
. hondarra
R
n
(
p
)
=
[
a
0
,
a
1
,
a
3
,
.
.
.
,
a
n
]
{\displaystyle R_{n}({\sqrt {p}})=[a_{0},a_{1},a_{3},...,a_{n}]}
adieraziko da.
Zenbaki irrazionala:
p
{\displaystyle {\sqrt {p}}}
, erro modukoa izateagatik, Zatiki jarraien bidezko bere garapena, lehen koefizientetik aurrera periodikoa dela frogatuko du Galoisek, eta periodo hori:
T
{\displaystyle T}
,
a
n
=
2
a
0
{\displaystyle a_{n}=2a_{0}}
berdintza betetzen duen lehen zenbaki arrunta dela.
Honela:
p
=
[
a
0
,
a
1
,
a
3
,
.
.
.
,
a
T
− − -->
1
,
2
a
0
¯ ¯ -->
]
{\displaystyle {\sqrt {p}}=[a_{0},{\overline {a_{1},a_{3},...,a_{T-1},2a_{0}}}]}
izango da zatiki jarraien bidezko garapena.
Ondorengoa dugu Pellen ekuazioaren oinarrizko ebazpena:
a
b
=
R
T
− − -->
1
(
p
)
=
[
a
0
,
a
1
,
a
3
,
.
.
.
,
a
T
− − -->
1
]
{\displaystyle {\frac {a}{b}}=R_{T-1}({\sqrt {p}})=[a_{0},a_{1},a_{3},...,a_{T-1}]}
,
T
{\displaystyle T}
bikoitia bada.
a
b
=
R
2
T
− − -->
1
(
p
)
=
[
a
0
,
a
1
,
a
3
,
.
.
.
,
a
2
T
− − -->
1
]
{\displaystyle {\frac {a}{b}}=R_{2T-1}({\sqrt {p}})=[a_{0},a_{1},a_{3},...,a_{2T-1}]}
,
T
{\displaystyle T}
bakoitia bada.
Irudian agertu den kasuan:
p
=
[
1
,
2
¯ ¯ -->
]
{\displaystyle {\sqrt {p}}=[1,{\overline {2}}]}
, ondorioz:
T
=
1
{\displaystyle T=1}
, bakoitia.
Eta oinarrizko ebazpena:
a
b
=
R
1
(
2
)
=
[
1
,
2
]
=
1
+
1
2
=
3
2
{\displaystyle {\frac {a}{b}}=R_{1}({\sqrt {2}})=[1,2]=1+{\frac {1}{2}}={\frac {3}{2}}}
Bateragarritasuna
Pellen ekuazioa, bateragarria da,
p
{\displaystyle p}
edozein zenbaki arrunt eta ez karratu izanik. Pell-en ekuazioak beti onartzen du ebazpen neutroa:
x
=
1
,
y
=
0
{\displaystyle x=1,y=0}
, horregatik bateragarria dela diogunean, neutroa ez den ebazpen baten existentziaz mintzo gara.
Peter Gustav Lejeune Dirichlet (1805-1859)
Pell-en ekuazioa bateragarria dela frogatuko da,
p
{\displaystyle p}
edozein zenbaki arrunt eta ez karratu izanik. Honetarako Dirichlet -en bidea jarraituz: Lema bat, korolario bat eta proposizio bat frogatuz.
Oharra: Notazioetan,
[
a
,
b
]
{\displaystyle [a,b]}
bitartea erabiliko da,
[
a
,
b
]
∩ ∩ -->
Z
{\displaystyle [a,b]\cap \mathbb {Z} }
multzoa adierazteko, eta
[
x
]
{\displaystyle [x]}
, berriz,
x
{\displaystyle x}
-ren zati osoa adierazteko.
ℵ ℵ -->
{\displaystyle \aleph }
, aleph zero sinboloak infinitu kontagarria adierazten du, eta
|
A
|
{\displaystyle \left\vert A\right\vert }
-k,
A
{\displaystyle A}
multzoaren elementu kopurua.
Zenbaki arrazionalak:
Q
=
{
p
q
:
p
∈ ∈ -->
Z
,
q
∈ ∈ -->
N
}
{\displaystyle \mathbb {Q} =\{{\frac {p}{q}}:p\in \mathbb {Z} ,q\in \mathbb {N} \}}
Lema
α α -->
∈ ∈ -->
R
{\displaystyle \alpha \in \mathbb {R} }
emanik,
∀ ∀ -->
n
∈ ∈ -->
N
{\displaystyle \forall n\in \mathbb {N} }
-rentzat
∃ ∃ -->
p
q
∈ ∈ -->
Q
{\displaystyle \exists {\frac {p}{q}}\in \mathbb {Q} }
non
|
α α -->
− − -->
p
q
|
<
1
q
⋅ ⋅ -->
n
{\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}}}
eta
q
∈ ∈ -->
[
1
,
n
]
{\displaystyle q\in [1,n]}
.
Froga.
p
q
{\displaystyle {\frac {p}{q}}}
zenbaki arrazionala,
p
∈ ∈ -->
Z
{\displaystyle {p}\in \mathbb {Z} }
eta
q
∈ ∈ -->
N
{\displaystyle {q}\in \mathbb {N} }
suposatzen da orokortasuna galdu gabe.
n
∈ ∈ -->
N
{\displaystyle {n}\in \mathbb {N} }
emanik, ondorengo segida eraikiko da:
x
j
=
j
α α -->
− − -->
[
j
α α -->
]
{\displaystyle x_{j}=j\alpha -[j\alpha ]}
non
j
∈ ∈ -->
[
0
,
n
]
{\displaystyle j\in [0,n]}
.
x
j
=
j
α α -->
− − -->
[
j
α α -->
]
∈ ∈ -->
[
0
,
1
)
=
⋃ ⋃ -->
k
=
0
n
− − -->
1
[
k
n
,
k
+
1
n
)
{\displaystyle x_{j}=j\alpha -[j\alpha ]\in [0,1{\bigr )}=\bigcup _{k=0}^{n-1}[{\frac {k}{n}},{\frac {k+1}{n}}{\bigr )}}
,
∀ ∀ -->
j
∈ ∈ -->
[
0
,
n
]
{\displaystyle \forall j\in [0,n]}
-rentzat.
Honela
n
+
1
{\displaystyle n+1}
zenbaki ,
n
{\displaystyle n}
bitarte disjuntutan banatu dira, eta usategi printzipioa erabiliz, existitzen da bitarte bat, gutsienez bi zenbaki bere baitan dituena.
∃ ∃ -->
r
,
s
∈ ∈ -->
[
0
,
n
]
{\displaystyle \exists {r},{s}\in [0,n]}
, eta
r
<
s
{\displaystyle {r}<{s}}
non
|
x
r
− − -->
x
s
|
<
1
n
{\displaystyle \left\vert x_{r}-x_{s}\right\vert <{\frac {1}{n}}}
|
x
r
− − -->
x
s
|
=
|
r
α α -->
− − -->
s
α α -->
− − -->
(
[
r
α α -->
]
− − -->
[
s
α α -->
]
)
|
=
{\displaystyle \left\vert x_{r}-x_{s}\right\vert =\left\vert r\alpha -s\alpha -([r\alpha ]-[s\alpha ])\right\vert =}
(
r
− − -->
s
)
|
α α -->
− − -->
[
r
α α -->
]
− − -->
[
s
α α -->
]
r
− − -->
s
|
<
1
n
{\displaystyle (r-s)\left\vert \alpha -{\frac {[r\alpha ]-[s\alpha ]}{r-s}}\right\vert <{\frac {1}{n}}}
r
,
s
∈ ∈ -->
[
0
,
n
]
{\displaystyle {r},{s}\in [0,n]}
, eta
r
<
s
{\displaystyle {r}<{s}}
⇒ ⇒ -->
1
≤ ≤ -->
r
− − -->
s
≤ ≤ -->
n
{\displaystyle \Rightarrow 1\leq r-s\leq n}
. Honela
q
=
r
− − -->
s
{\displaystyle q=r-s}
eta
p
=
[
r
α α -->
]
− − -->
[
s
α α -->
]
{\displaystyle p=[r\alpha ]-[s\alpha ]}
aukeratuz.
∃ ∃ -->
p
q
∈ ∈ -->
Q
{\displaystyle \exists {\frac {p}{q}}\in Q}
non
|
α α -->
− − -->
p
q
|
<
1
q
⋅ ⋅ -->
n
{\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}}}
eta
q
∈ ∈ -->
[
1
,
n
]
{\displaystyle q\in [1,n]}
.
Korolarioa (Dirichleten teorema)
α α -->
∈ ∈ -->
R
− − -->
Q
{\displaystyle \alpha \in \mathbb {R} -\mathbb {Q} }
eta
ℜ ℜ -->
=
{
p
q
∈ ∈ -->
Q
:
|
α α -->
− − -->
p
q
|
<
1
q
2
}
{\displaystyle \Re =\left\{{\frac {p}{q}}\in \mathbb {Q} :\left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q^{2}}}\right\}}
⇒ ⇒ -->
|
ℜ ℜ -->
|
=
ℵ ℵ -->
{\displaystyle \Rightarrow \left\vert \Re \right\vert =\aleph }
Froga
p
=
[
α α -->
]
,
q
=
1
{\displaystyle p=\left[\alpha \right],q=1}
, hartuaz
|
α α -->
− − -->
[
α α -->
]
1
|
<
1
1
2
⇒ ⇒ -->
[
α α -->
]
∈ ∈ -->
ℜ ℜ -->
{\displaystyle \left\vert \alpha -{\frac {[\alpha ]}{1}}\right\vert <{\frac {1}{1^{2}}}\Rightarrow [\alpha ]\in \Re }
. Ondorioz
ℜ ℜ -->
≠ ≠ -->
∅ ∅ -->
{\displaystyle \Re \neq \emptyset }
.
Absurdura bideratuz suposa bedi,
|
ℜ ℜ -->
|
<
ℵ ℵ -->
{\displaystyle \left\vert \Re \right\vert <\aleph }
dela (finitua).
|
ℜ ℜ -->
|
<
ℵ ℵ -->
⇒ ⇒ -->
∃ ∃ -->
ϵ ϵ -->
=
M
i
n
{
|
α α -->
− − -->
r
|
:
r
∈ ∈ -->
ℜ ℜ -->
}
{\displaystyle \left\vert \Re \right\vert <\aleph \Rightarrow \exists \epsilon =Min\left\{\left\vert \alpha -r\right\vert :r\in \Re \right\}}
Zenbaki arrazionalen arkimedesen ezaugarriagatik:
∃ ∃ -->
n
∈ ∈ -->
N
:
1
n
<
ϵ ϵ -->
{\displaystyle \exists n\in \mathbb {N} :{\frac {1}{n}}<\epsilon }
.
α α -->
{\displaystyle \alpha }
eta
n
{\displaystyle n}
zenbakiei, aurreko Lema aplikatuz:
∃ ∃ -->
p
q
∈ ∈ -->
Q
:
|
α α -->
− − -->
p
q
|
<
1
q
⋅ ⋅ -->
n
;
q
∈ ∈ -->
[
1
,
n
]
{\displaystyle \exists {\frac {p}{q}}\in \mathbb {Q} :\left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}};q\in [1,n]}
Ondorioz,
|
α α -->
− − -->
p
q
|
<
1
q
⋅ ⋅ -->
n
≤ ≤ -->
1
n
<
ϵ ϵ -->
⇒ ⇒ -->
p
q
∉
ℜ ℜ -->
{\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}}\leq {\frac {1}{n}}<\epsilon \Rightarrow {\frac {p}{q}}\not \in \Re }
Eta bestalde
|
α α -->
− − -->
p
q
|
<
1
q
⋅ ⋅ -->
n
≤ ≤ -->
1
q
2
⇒ ⇒ -->
p
q
∈ ∈ -->
ℜ ℜ -->
{\displaystyle \left\vert \alpha -{\frac {p}{q}}\right\vert <{\frac {1}{q\cdot n}}\leq {\frac {1}{q^{2}}}\Rightarrow {\frac {p}{q}}\in \Re }
Absurdua denez ezinezkoa da
ℜ ℜ -->
{\displaystyle \Re }
finitua izatea
⇒ ⇒ -->
|
ℜ ℜ -->
|
=
ℵ ℵ -->
{\displaystyle \Rightarrow \left\vert \Re \right\vert =\aleph }
Proposizioa
p
{\displaystyle p}
zenbaki arrunt eta ez karratua bada, Pell-en ekuazioak:
x
2
− − -->
p
y
2
=
1
{\displaystyle x^{2}-py^{2}=1}
, badu ebazpen ez neutro bat.
Froga
p
{\displaystyle p}
zenbaki arrunt eta ez karratua bada,
p
{\displaystyle {\sqrt {p}}}
ez da zenbaki arrazionala:
p
∈ ∈ -->
R
− − -->
Q
{\displaystyle {\sqrt {p}}\in \mathbb {R} -\mathbb {Q} }
.
α α -->
=
p
∈ ∈ -->
R
− − -->
Q
{\displaystyle \alpha ={\sqrt {p}}\in \mathbb {R} -\mathbb {Q} }
zenbakiari aurreko korolarioa aplikatuz,
|
ℜ ℜ -->
|
=
ℵ ℵ -->
{\displaystyle \left\vert \Re \right\vert =\aleph }
, zeinetan:
ℜ ℜ -->
=
{
x
y
∈ ∈ -->
Q
:
|
p
− − -->
x
y
|
<
1
y
2
}
{\displaystyle \Re =\left\{{\frac {x}{y}}\in \mathbb {Q} :\left\vert {\sqrt {p}}-{\frac {x}{y}}\right\vert <{\frac {1}{y^{2}}}\right\}}
.
Ondorengo emaitza frogatuko da hiru pausotan:
∃ ∃ -->
m
∈ ∈ -->
Z
;
|
m
|
<
1
+
2
p
{\displaystyle \exists m\in Z;\left\vert m\right\vert <1+2{\sqrt {p}}}
non
|
A
m
|
=
ℵ ℵ -->
{\displaystyle \left\vert {\mathcal {A_{m}}}\right\vert =\aleph }
.
Zeinetan
A
m
=
{
(
x
,
y
)
∈ ∈ -->
N
× × -->
N
:
|
x
2
− − -->
p
y
2
|
=
m
}
{\displaystyle {\mathcal {A}}_{m}=\{(x,y)\in N\times N:\left\vert x^{2}-py^{2}\right\vert =m\}}
multzoa den.
Bat :
|
ℜ ℜ -->
1
|
=
ℵ ℵ -->
{\displaystyle \left\vert \Re _{1}\right\vert =\aleph }
, forgatuko da, zeinetan
ℜ ℜ -->
1
=
{
x
y
∈ ∈ -->
Q
:
|
x
2
− − -->
y
2
p
|
<
1
+
2
p
}
{\displaystyle \Re _{1}=\left\{{\frac {x}{y}}\in \mathbb {Q} :\left\vert x^{2}-y^{2}p\right\vert <1+2{\sqrt {p}}\right\}}
. Ondorengo desberdintzak betetzen dituzte
ℜ ℜ -->
{\displaystyle \Re }
multzoko zatikiek:
x
y
∈ ∈ -->
ℜ ℜ -->
{\displaystyle {\frac {x}{y}}\in \Re }
emanik:
|
p
− − -->
x
y
|
<
1
y
2
⇔ ⇔ -->
|
y
p
− − -->
x
|
<
1
y
{\displaystyle \left\vert {\sqrt {p}}-{\frac {x}{y}}\right\vert <{\frac {1}{y^{2}}}\Leftrightarrow \left\vert y{\sqrt {p}}-x\right\vert <{\frac {1}{y}}}
, eta desberdintza triangeluarra erabiliz:
|
y
p
+
x
|
=
|
2
y
p
+
x
− − -->
y
p
|
≤ ≤ -->
{\displaystyle \left\vert y{\sqrt {p}}+x\right\vert =\left\vert 2y{\sqrt {p}}+x-y{\sqrt {p}}\right\vert \leq }
2
y
p
+
|
x
− − -->
y
p
|
<
1
y
+
2
y
p
{\displaystyle 2y{\sqrt {p}}+\left\vert x-y{\sqrt {p}}\right\vert <{\frac {1}{y}}+2y{\sqrt {p}}}
.
Bi zenbakien biderketa eginez:
|
x
− − -->
y
p
|
⋅ ⋅ -->
|
x
+
y
p
|
=
|
x
2
− − -->
p
y
2
|
{\displaystyle \left\vert x-y{\sqrt {p}}\right\vert \cdot \left\vert x+y{\sqrt {p}}\right\vert =\left\vert x^{2}-py^{2}\right\vert }
<
1
y
⋅ ⋅ -->
(
1
y
+
2
y
p
)
=
1
y
2
+
2
p
≤ ≤ -->
1
+
2
p
{\displaystyle <{\frac {1}{y}}\cdot ({\frac {1}{y}}+2y{\sqrt {p}})={\frac {1}{y^{2}}}+2{\sqrt {p}}\leq 1+2{\sqrt {p}}}
. Honela:
x
y
∈ ∈ -->
ℜ ℜ -->
⇒ ⇒ -->
x
y
∈ ∈ -->
ℜ ℜ -->
1
{\displaystyle {\frac {x}{y}}\in \Re \Rightarrow {\frac {x}{y}}\in \Re _{1}}
. Eta emaitza frogatzen da:
ℜ ℜ -->
⊂ ⊂ -->
ℜ ℜ -->
1
;
|
ℜ ℜ -->
|
=
ℵ ℵ -->
⇒ ⇒ -->
|
ℜ ℜ -->
1
|
=
ℵ ℵ -->
{\displaystyle \Re \subset \Re _{1};|\Re |=\aleph \Rightarrow |\Re _{1}|=\aleph }
.
Bi
|
A
|
=
ℵ ℵ -->
{\displaystyle \left\vert {\mathcal {A}}\right\vert =\aleph }
zeinetan
A
=
{
(
x
,
y
)
∈ ∈ -->
N
× × -->
N
:
|
x
2
− − -->
p
y
2
|
<
1
+
2
p
}
{\displaystyle {\mathcal {A}}=\{(x,y)\in \mathbb {N} \times \mathbb {N} :\left\vert x^{2}-py^{2}\right\vert <1+2{\sqrt {p}}\}}
.
Ondorengo aplikazioa sortuko da:
f
:
A
→ → -->
ℜ ℜ -->
1
{\displaystyle f:{\mathcal {A}}\rightarrow \Re _{1}}
, zeinetan
f
(
x
,
y
)
=
x
y
{\displaystyle f(x,y)={\frac {x}{y}}}
.
Erraz frogatzen da ondo definitutako aplikazioa dela, eta supraiektiboa dela.
f
{\displaystyle f}
supraiektiboa
⇒ ⇒ -->
|
ℜ ℜ -->
1
|
≤ ≤ -->
|
A
|
{\displaystyle \Rightarrow \left\vert \Re _{1}\right\vert \leq \left\vert {\mathcal {A}}\right\vert }
.
ℜ ℜ -->
1
{\displaystyle \Re _{1}}
infinitua denez,
A
{\displaystyle {\mathcal {A}}}
ere infinitua da:
|
ℜ ℜ -->
1
|
=
ℵ ℵ -->
⇒ ⇒ -->
|
A
|
=
ℵ ℵ -->
{\displaystyle \left\vert \Re _{1}\right\vert =\aleph \Rightarrow |{\mathcal {A}}|=\aleph }
.
Hiru :
∃ ∃ -->
m
∈ ∈ -->
Z
;
|
m
|
<
1
+
2
p
{\displaystyle \exists m\in Z;\left\vert m\right\vert <1+2{\sqrt {p}}}
non
|
A
m
|
=
ℵ ℵ -->
{\displaystyle \left\vert {\mathcal {A}}_{m}\right\vert =\aleph }
.
Zeinetan
A
m
=
{
(
x
,
y
)
∈ ∈ -->
N
× × -->
N
:
|
x
2
− − -->
p
y
2
|
=
m
}
{\displaystyle {\mathcal {A}}_{m}=\{(x,y)\in \mathbb {N} \times \mathbb {N} :\left\vert x^{2}-py^{2}\right\vert =m\}}
multzoa den.
Multzoen arteko ondorengo berdintza betetzen da:
A
=
⋃ ⋃ -->
|
m
|
<
1
+
2
p
A
m
{\displaystyle {\mathcal {A}}=\bigcup _{|m|<1+2{\sqrt {p}}}{\mathcal {A}}_{m}}
.
Absurdura bideratuz
∀ ∀ -->
m
∈ ∈ -->
Z
;
|
m
|
<
1
+
2
p
⇒ ⇒ -->
|
A
m
|
<
ℵ ℵ -->
{\displaystyle \forall m\in Z;\left\vert m\right\vert <1+2{\sqrt {p}}\Rightarrow \left\vert {\mathcal {A}}_{m}\right\vert <\aleph }
suposatzen bada.
|
A
|
=
|
⋃ ⋃ -->
|
m
|
<
1
+
2
p
A
m
|
≤ ≤ -->
∑ ∑ -->
|
m
|
<
1
+
2
p
|
A
m
|
<
ℵ ℵ -->
{\displaystyle |{\mathcal {A}}|=|\bigcup _{|m|<1+2{\sqrt {p}}}{\mathcal {A}}_{m}|\leq \sum _{|m|<1+2{\sqrt {p}}}|{\mathcal {A}}_{m}|<\aleph }
. Multzo finituen batura finitua finitua izateagatik.
Honela,
|
A
|
<
ℵ ℵ -->
{\displaystyle \left\vert {\mathcal {A}}\right\vert <\aleph }
ondorioztatu da, zeinak
|
A
|
=
ℵ ℵ -->
{\displaystyle \left\vert {\mathcal {A}}\right\vert =\aleph }
, ukatzen duen: absurdua.
Existitzen da beraz
A
m
{\displaystyle {\mathcal {A}}_{m}}
multzoren bat infinitu elementu dituena.
Behin
m
∈ ∈ -->
Z
{\displaystyle m\in Z}
aukeratu dugularik (
|
m
|
<
1
+
2
p
{\displaystyle \left\vert m\right\vert <1+2{\sqrt {p}}}
) eta
|
A
m
|
=
ℵ ℵ -->
{\displaystyle \left\vert {\mathcal {A}}_{m}\right\vert =\aleph }
,
A
m
{\displaystyle {\mathcal {A}}_{m}}
multzoan Pellen ekuazioa betetzen duen ebazpen ez neutro bat existitzen dela frogatuko da. Ondorengo atalak frogatuz:
Bat : Ondorengo emaitza frogatuko da:
∃ ∃ -->
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
∈ ∈ -->
A
m
{\displaystyle \exists (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}}
:
(
x
1
,
y
1
)
≠ ≠ -->
(
x
2
,
y
2
)
{\displaystyle (x_{1},y_{1})\neq (x_{2},y_{2})}
,
x
1
≡ ≡ -->
x
2
(
mod
|
m
|
)
;
y
1
≡ ≡ -->
y
2
(
mod
|
m
|
)
{\displaystyle x_{1}\equiv x_{2}{\pmod {|m|}};y_{1}\equiv y_{2}{\pmod {|m|}}}
.
f
:
A
m
→ → -->
Z
|
m
|
× × -->
Z
|
m
|
{\displaystyle f:{\mathcal {A}}_{m}\rightarrow Z_{|m|}\times Z_{|m|}}
, aplikazioa eraikiko da zeinetan
f
(
x
,
y
)
=
(
x
+
|
m
|
Z
,
y
+
|
m
|
Z
)
{\displaystyle f(x,y)=(x+\left\vert m\right\vert Z,y+\left\vert m\right\vert Z)}
,
x
+
|
m
|
Z
∈ ∈ -->
Z
|
m
|
=
{
0
¯ ¯ -->
,
1
¯ ¯ -->
,
.
.
.
,
m
− − -->
1
¯ ¯ -->
}
{\displaystyle x+\left\vert m\right\vert Z\in Z_{|m|}=\{{{\bar {0}},{\bar {1}},...,{\overline {m-1}}}\}}
eraztuneko elementuak izanik.
A
m
{\displaystyle {\mathcal {A}}_{m}}
Multzoa infinitua izateagatik eta
Z
|
m
|
× × -->
Z
|
m
|
{\displaystyle Z_{|m|}\times Z_{|m|}}
, multzoa berriz finitua, irudi berdineko bi elementu desberdin existitzen direla ondoriozta daiteke ( zentzu zorrotzean infinitu ere exititu arren).
|
A
m
|
=
ℵ ℵ -->
{\displaystyle \left\vert {\mathcal {A}}_{m}\right\vert =\aleph }
, eta
|
Z
|
m
|
× × -->
Z
|
m
|
|
=
m
2
⇒ ⇒ -->
{\displaystyle \left\vert Z_{|m|}\times Z_{|m|}\right\vert =m^{2}\Rightarrow }
∃ ∃ -->
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
∈ ∈ -->
A
m
{\displaystyle \exists (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}}
.
f
(
x
1
,
y
1
)
=
f
(
x
2
,
y
2
)
{\displaystyle f(x_{1},y_{1})=f(x_{2},y_{2})}
eta
(
x
1
,
y
1
)
≠ ≠ -->
(
x
2
,
y
2
)
{\displaystyle (x_{1},y_{1})\neq (x_{2},y_{2})}
.
∃ ∃ -->
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
∈ ∈ -->
A
m
{\displaystyle \exists (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}}
non
(
x
1
+
|
m
|
Z
,
y
1
+
|
m
|
Z
)
=
(
x
2
+
|
m
|
Z
,
y
2
+
|
m
|
Z
)
{\displaystyle (x_{1}+\left\vert m\right\vert Z,y_{1}+\left\vert m\right\vert Z)=(x_{2}+\left\vert m\right\vert Z,y_{2}+\left\vert m\right\vert Z)}
, honela
∃ ∃ -->
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
∈ ∈ -->
A
m
{\displaystyle \exists (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}}
:
(
x
1
,
y
1
)
≠ ≠ -->
(
x
2
,
y
2
)
{\displaystyle (x_{1},y_{1})\neq (x_{2},y_{2})}
eta
x
1
≡ ≡ -->
x
2
(
mod
|
m
|
)
;
y
1
≡ ≡ -->
y
2
(
mod
|
m
|
)
{\displaystyle x_{1}\equiv x_{2}{\pmod {|m|}};y_{1}\equiv y_{2}{\pmod {|m|}}}
.
Bi : Ondorengo erlazioa frogatuko da:
z
k
h
(
x
1
,
y
1
)
=
z
k
h
(
x
2
,
y
2
)
=
d
{\displaystyle {zkh}(x_{1},y_{1})={zkh}(x_{2},y_{2})=d}
.
d
/
z
k
h
(
x
1
,
y
1
)
⇒ ⇒ -->
d
/
z
k
h
(
x
2
,
y
2
)
{\displaystyle d/{zkh}(x_{1},y_{1})\Rightarrow d/{zkh}(x_{2},y_{2})}
frogatuko da, lehenik.
d
/
z
k
h
(
x
1
,
y
1
)
⇒ ⇒ -->
d
/
x
1
;
d
/
y
1
⇒ ⇒ -->
{
d
2
/
x
1
2
;
d
2
/
y
1
2
x
1
2
− − -->
p
y
1
2
=
m
⇒ ⇒ -->
d
2
/
m
{\displaystyle d/{zkh}(x_{1},y_{1})\Rightarrow d/x_{1};d/y_{1}\Rightarrow {\begin{cases}d^{2}/x_{1}^{2};d^{2}/y_{1}^{2}\\x_{1}^{2}-py_{1}^{2}=m\end{cases}}\Rightarrow d^{2}/m}
{
{
d
/
x
1
;
d
/
m
x
1
≡ ≡ -->
x
2
(
mod
|
m
|
)
⇒ ⇒ -->
d
/
x
2
{
d
/
y
1
;
d
/
m
y
1
≡ ≡ -->
y
2
(
mod
|
m
|
)
⇒ ⇒ -->
d
/
y
2
⇒ ⇒ -->
d
/
z
k
t
(
x
2
,
y
2
)
{\displaystyle {\begin{cases}{\begin{cases}d/x1;d/m\\x_{1}\equiv x_{2}{\pmod {|m|}}\end{cases}}\Rightarrow d/x_{2}\\{\begin{cases}d/y_{1};d/m\\y_{1}\equiv y_{2}{\pmod {|m|}}\end{cases}}\Rightarrow d/y_{2}\end{cases}}\Rightarrow d/{zkt}(x_{2},y_{2})}
.
Eta modu berean argudiatzen da:
d
/
z
k
h
(
x
2
,
y
2
)
⇒ ⇒ -->
d
/
z
k
h
(
x
1
,
y
1
)
{\displaystyle d/{zkh}(x_{2},y_{2})\Rightarrow d/{zkh}(x_{1},y_{1})}
.
Ondorioz:
z
k
h
(
x
1
,
y
1
)
=
z
k
h
(
x
2
,
y
2
)
=
d
{\displaystyle {zkh}(x_{1},y_{1})={zkh}(x_{2},y_{2})=d}
.
Hiru :
(
x
1
x
2
− − -->
p
y
1
y
2
,
x
1
y
2
− − -->
x
2
y
1
)
∈ ∈ -->
A
m
{\displaystyle (x_{1}x_{2}-py_{1}y_{2},x_{1}y_{2}-x_{2}y_{1})\in {\mathcal {A}}_{m}}
frogatuko da.
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
∈ ∈ -->
A
m
⇒ ⇒ -->
(
x
1
x
2
− − -->
p
y
1
y
2
,
x
1
y
2
− − -->
x
2
y
1
)
∈ ∈ -->
A
m
{\displaystyle (x_{1},y_{1}),(x_{2},y_{2})\in {\mathcal {A}}_{m}\Rightarrow (x_{1}x_{2}-py_{1}y_{2},x_{1}y_{2}-x_{2}y_{1})\in {\mathcal {A}}_{m}}
.
(
x
1
2
− − -->
p
y
1
2
)
(
x
2
2
− − -->
p
y
2
2
)
=
(
x
1
x
2
− − -->
p
y
1
y
2
)
2
− − -->
p
(
x
1
y
2
− − -->
x
2
y
1
)
2
=
m
2
{\displaystyle (x_{1}^{2}-py_{1}^{2})(x_{2}^{2}-py_{2}^{2})=(x_{1}x_{2}-py_{1}y_{2})^{2}-p(x_{1}y_{2}-x_{2}y_{1})^{2}=m^{2}}
.
Lau :
x
1
y
2
− − -->
x
2
y
1
≡ ≡ -->
0
(
mod
|
m
|
)
{\displaystyle x_{1}y_{2}-x_{2}y_{1}\equiv 0{\pmod {|m|}}}
eta
x
1
x
2
− − -->
p
y
1
y
2
≡ ≡ -->
0
(
mod
|
m
|
)
{\displaystyle x_{1}x_{2}-py_{1}y_{2}\equiv 0{\pmod {|m|}}}
frogatuko da.
{
x
2
− − -->
x
1
≡ ≡ -->
0
(
mod
|
m
|
)
⇒ ⇒ -->
y
2
(
x
2
− − -->
x
1
)
≡ ≡ -->
0
(
mod
|
m
|
)
y
2
− − -->
y
1
≡ ≡ -->
0
(
mod
|
m
|
)
⇒ ⇒ -->
x
2
(
y
2
− − -->
y
1
)
≡ ≡ -->
0
(
mod
|
m
|
)
{\displaystyle {\begin{cases}x_{2}-x_{1}\equiv 0{\pmod {\left\vert m\right\vert }}\Rightarrow y_{2}(x_{2}-x_{1})\equiv 0{\pmod {\left\vert m\right\vert }}\\y_{2}-y_{1}\equiv 0{\pmod {\left\vert m\right\vert }}\Rightarrow x_{2}(y_{2}-y_{1})\equiv 0{\pmod {\left\vert m\right\vert }}\end{cases}}}
Kenketa eginez:
x
1
y
2
− − -->
x
2
y
1
≡ ≡ -->
0
(
mod
|
m
|
)
{\displaystyle x_{1}y_{2}-x_{2}y_{1}\equiv 0{\pmod {|m|}}}
x
1
y
2
− − -->
x
2
y
1
≡ ≡ -->
0
(
mod
|
m
|
)
⇒ ⇒ -->
(
x
1
y
2
− − -->
x
2
y
1
)
2
≡ ≡ -->
0
(
mod
m
2
)
{\displaystyle x_{1}y_{2}-x_{2}y_{1}\equiv 0{\pmod {|m|}}\Rightarrow (x_{1}y_{2}-x_{2}y_{1})^{2}\equiv 0{\pmod {m^{2}}}}
{
(
x
1
x
2
− − -->
p
y
1
y
2
)
2
− − -->
p
(
x
1
y
2
− − -->
x
2
y
1
)
2
=
m
2
(
x
1
y
2
− − -->
x
2
y
1
)
2
≡ ≡ -->
0
(
mod
m
2
)
⇒ ⇒ -->
(
x
1
x
2
− − -->
p
y
1
y
2
)
2
≡ ≡ -->
0
(
mod
m
2
)
{\displaystyle {\begin{cases}(x_{1}x_{2}-py_{1}y_{2})^{2}-p(x_{1}y_{2}-x_{2}y_{1})^{2}=m^{2}\\(x_{1}y_{2}-x_{2}y_{1})^{2}\equiv 0{\pmod {m^{2}}}\end{cases}}\Rightarrow (x_{1}x_{2}-py_{1}y_{2})^{2}\equiv 0{\pmod {m^{2}}}}
(
x
1
x
2
− − -->
p
y
1
y
2
)
2
≡ ≡ -->
0
(
mod
m
2
)
⇒ ⇒ -->
x
1
x
2
− − -->
p
y
1
y
2
≡ ≡ -->
0
(
mod
|
m
|
)
{\displaystyle (x_{1}x_{2}-py_{1}y_{2})^{2}\equiv 0{\pmod {m^{2}}}\Rightarrow x_{1}x_{2}-py_{1}y_{2}\equiv 0{\pmod {|m|}}}
.
x
1
x
2
− − -->
p
y
1
y
2
≡ ≡ -->
0
(
mod
|
m
|
)
{\displaystyle x_{1}x_{2}-py_{1}y_{2}\equiv 0{\pmod {|m|}}}
.
Bost : Pellen ekuazioaren ebazpen bat existitzen dela frogatuko da.
∃ ∃ -->
(
u
,
v
)
∈ ∈ -->
Z
× × -->
Z
:
u
2
− − -->
p
v
2
=
1
{\displaystyle \exists (u,v)\in \mathbb {Z} \times \mathbb {Z} :u^{2}-pv^{2}=1}
{
x
1
y
2
− − -->
x
2
y
1
≡ ≡ -->
0
(
mod
|
m
|
)
x
1
x
2
− − -->
p
y
1
y
2
≡ ≡ -->
0
(
mod
|
m
|
)
⇒ ⇒ -->
∃ ∃ -->
u
,
v
∈ ∈ -->
Z
{\displaystyle {\begin{cases}x_{1}y_{2}-x_{2}y_{1}\equiv 0{\pmod {|m|}}\\x_{1}x_{2}-py_{1}y_{2}\equiv 0{\pmod {|m|}}\end{cases}}\Rightarrow \exists u,v\in \mathbb {Z} }
non
{
x
1
y
2
− − -->
x
2
y
1
=
v
m
x
1
x
2
− − -->
p
y
1
y
2
=
u
m
{\displaystyle {\begin{cases}x_{1}y_{2}-x_{2}y_{1}=vm\\x_{1}x_{2}-py_{1}y_{2}=um\end{cases}}}
(
x
1
2
− − -->
p
y
1
2
)
(
x
2
2
− − -->
p
y
2
2
)
=
(
x
1
x
2
− − -->
p
y
1
y
2
)
2
− − -->
p
(
x
1
y
2
− − -->
x
2
y
1
)
2
=
m
2
{\displaystyle (x_{1}^{2}-py_{1}^{2})(x_{2}^{2}-py_{2}^{2})=(x_{1}x_{2}-py_{1}y_{2})^{2}-p(x_{1}y_{2}-x_{2}y_{1})^{2}=m^{2}}
.
(
x
1
x
2
− − -->
p
y
1
y
2
)
2
− − -->
p
(
x
1
y
2
− − -->
x
2
y
1
)
2
=
m
2
⇔ ⇔ -->
(
u
m
)
2
− − -->
p
(
v
m
)
2
=
m
2
⇔ ⇔ -->
u
2
− − -->
p
v
2
=
1
{\displaystyle (x_{1}x_{2}-py_{1}y_{2})^{2}-p(x_{1}y_{2}-x_{2}y_{1})^{2}=m^{2}\Leftrightarrow (um)^{2}-p(vm)^{2}=m^{2}\Leftrightarrow u^{2}-pv^{2}=1}
Ondorioz Pell ekuazioaren ebazpen bat existitzen da:
x
=
u
,
y
=
v
{\displaystyle x=u,y=v}
.
Sei: Ebazpena ez dela neutroa frogatuko da:
v
≠ ≠ -->
0
{\displaystyle v\neq 0}
.
Absurdura bideratuz,
v
=
0
{\displaystyle v=0}
baldin bada:
x
1
y
2
=
x
2
y
1
{\displaystyle x_{1}y_{2}=x_{2}y_{1}}
.
z
k
t
(
x
1
,
y
1
)
=
z
k
t
(
x
2
,
y
2
)
=
d
{\displaystyle {zkt}(x_{1},y_{1})={zkt}(x_{2},y_{2})=d}
denez ondorengo zenbakiak sortuko dira:
x
1
=
d
x
1
′
,
x
2
=
d
x
2
′
,
y
1
=
d
y
1
′
,
y
2
=
d
y
2
′
{\displaystyle x_{1}=dx'_{1},x_{2}=dx'_{2},y_{1}=dy'_{1},y_{2}=dy'_{2}}
.
Zenbaki hauen zatitzaile komunetako handiena:
z
k
t
(
x
1
,
y
1
)
=
z
k
t
(
x
2
,
y
2
)
=
d
⇒ ⇒ -->
z
k
t
(
x
1
′
,
y
1
′
)
=
z
k
t
(
x
2
′
,
y
2
′
)
=
1
{\displaystyle {zkt}(x_{1},y_{1})={zkt}(x_{2},y_{2})=d\Rightarrow {zkt}(x'_{1},y'_{1})={zkt}(x'_{2},y'_{2})=1}
.
Eta:
x
1
y
2
=
x
2
y
1
⇒ ⇒ -->
x
1
′
y
2
′
=
x
2
′
y
1
′
{\displaystyle x_{1}y_{2}=x_{2}y_{1}\Rightarrow x'_{1}y'_{2}=x'_{2}y'_{1}}
{
{
x
1
′
y
2
′
=
x
2
′
y
1
′
z
k
t
(
x
1
′
,
y
1
′
)
=
1
⇒ ⇒ -->
y
2
′
y
1
′
=
x
2
′
x
1
′
∈ ∈ -->
Z
{
x
1
′
y
2
′
=
x
2
′
y
1
′
z
k
t
(
x
2
′
,
y
2
′
)
=
1
⇒ ⇒ -->
x
1
′
x
2
′
=
y
1
′
y
2
′
∈ ∈ -->
Z
{\displaystyle {\begin{cases}{\begin{cases}x'_{1}y'_{2}=x'_{2}y'_{1}\\{zkt}(x'_{1},y'_{1})=1\end{cases}}\Rightarrow {\frac {y'_{2}}{y'_{1}}}={\frac {x'_{2}}{x'_{1}}}\in \mathbb {Z} \\{\begin{cases}x'_{1}y'_{2}=x'_{2}y'_{1}\\{zkt}(x'_{2},y'_{2})=1\end{cases}}\Rightarrow {\frac {x'_{1}}{x'_{2}}}={\frac {y'_{1}}{y'_{2}}}\in \mathbb {Z} \end{cases}}}
.
Zenbaki oso bat bere alderantzizkoaren berdina bada, zenbaki oso hori: 1 edo -1 da.
x
2
′
x
1
′
=
− − -->
1
⇒ ⇒ -->
x
2
=
− − -->
x
1
{\displaystyle {\frac {x'_{2}}{x'_{1}}}=-1\Rightarrow x_{2}=-x_{1}}
bada, bietako bat negatiboa da, eta aukeraketa
x
+
|
m
|
Z
∈ ∈ -->
Z
|
m
|
=
{
0
¯ ¯ -->
,
1
¯ ¯ -->
,
.
.
.
,
m
− − -->
1
¯ ¯ -->
}
{\displaystyle x+\left\vert m\right\vert Z\in Z_{|m|}=\{{{\bar {0}},{\bar {1}},...,{\overline {m-1}}}\}}
multzotik egin da ezinezkoa.
x
2
′
x
1
′
=
1
{\displaystyle {\frac {x'_{2}}{x'_{1}}}=1}
, bada
(
x
1
′
,
y
1
′
)
=
(
x
2
′
,
y
2
′
)
⇒ ⇒ -->
(
x
1
,
y
1
)
=
(
x
2
,
y
2
)
{\displaystyle (x'_{1},y'_{1})=(x'_{2},y'_{2})\Rightarrow (x_{1},y_{1})=(x_{2},y_{2})}
. Zeinak osagaien aukeraketa ukatzen duen, ezinezkoa.
Ondorioz:
v
≠ ≠ -->
0
{\displaystyle v\neq 0}
.
Adibideak
Lehena:
p
=
21
{\displaystyle p=21}
, ez da karratua, eta beraz:
x
2
− − -->
21
y
2
=
1
{\displaystyle x^{2}-21y^{2}=1}
, bateragarria.
21
=
[
4
,
1
,
1
,
2
,
1
,
1
,
8
¯ ¯ -->
]
{\displaystyle {\sqrt {21}}=[4,{\overline {1,1,2,1,1,8}}]}
, zatiki jarraien bidezko garapena.
T
=
6
{\displaystyle T=6}
, bikoitia denez:
Ebazpen minimoa:
a
2
− − -->
21
b
2
=
1
{\displaystyle a^{2}-21b^{2}=1}
.
a
b
=
R
T
− − -->
1
=
R
5
=
[
4
,
1
,
1
,
2
,
1
,
1
]
=
55
12
⇒ ⇒ -->
a
=
55
,
b
=
12
{\displaystyle {\frac {a}{b}}=R_{T-1}=R_{5}=[4,1,1,2,1,1]={\frac {55}{12}}\Rightarrow a=55,b=12}
.
Lehen koadranteko ebazpen guztiak:
n
∈ ∈ -->
N
{\displaystyle n\in \mathbb {N} }
x
n
=
(
55
+
12
21
)
n
+
(
55
− − -->
12
21
)
n
2
{\displaystyle x_{n}={\frac {(55+12{\sqrt {21}})^{n}+(55-12{\sqrt {21}})^{n}}{2}}}
y
n
=
(
55
+
12
21
)
n
− − -->
(
55
− − -->
12
21
)
n
2
21
{\displaystyle y_{n}={\frac {(55+12{\sqrt {21}})^{n}-(55-12{\sqrt {21}})^{n}}{2{\sqrt {21}}}}}
Bigarrena:
p
=
53
{\displaystyle p=53}
, ez da karratua, beraz:
x
2
− − -->
53
y
2
=
1
{\displaystyle x^{2}-53y^{2}=1}
, bateragarria da.
53
=
[
7
,
3
,
1
,
1
,
3
,
14
¯ ¯ -->
]
{\displaystyle {\sqrt {53}}=[7,{\overline {3,1,1,3,14}}]}
, zatiki jarraien bidezko garapena.
T
=
5
{\displaystyle T=5}
, bakoitia denez:
Ebazpen minimoa:
a
2
− − -->
21
b
2
=
1
{\displaystyle a^{2}-21b^{2}=1}
a
b
=
R
2
T
− − -->
1
=
R
9
=
[
7
,
3
,
1
,
1
,
3
,
14
,
3
,
1
,
1
,
3
]
=
66249
9100
⇒ ⇒ -->
a
=
66249
,
b
=
9100
{\displaystyle {\frac {a}{b}}=R_{2T-1}=R_{9}=[7,3,1,1,3,14,3,1,1,3]={\frac {66249}{9100}}\Rightarrow a=66249,b=9100}
Eta lehen koadranteko ebazpen guztiak:
n
∈ ∈ -->
N
{\displaystyle n\in \mathbb {N} }
x
n
=
(
66249
+
9100
53
)
n
+
(
66249
− − -->
9100
53
)
n
2
{\displaystyle x_{n}={\frac {(66249+9100{\sqrt {53}})^{n}+(66249-9100{\sqrt {53}})^{n}}{2}}}
y
n
=
(
66249
+
9100
53
)
n
− − -->
(
66249
− − -->
9100
53
)
n
2
53
{\displaystyle y_{n}={\frac {(66249+9100{\sqrt {53}})^{n}-(66249-9100{\sqrt {53}})^{n}}{2{\sqrt {53}}}}}
Ebazpenak
p
{\displaystyle p}
-ren edozein baliorentzat
(
x
,
y
)
=
(
1
,
0
)
{\displaystyle (x,y)=(1,0)}
edo
(
x
,
y
)
=
(
− − -->
1
,
0
)
{\displaystyle (x,y)=(-1,0)}
, beti dira
x
2
− − -->
p
y
2
=
1
{\displaystyle x^{2}-py^{2}=1}
, ekuazioaren ebazpen. Ebazpen hauek ebazpen neutroak edo berealakoak izendatzen dira.
(
x
,
y
)
=
(
a
,
b
)
{\displaystyle (x,y)=(a,b)}
,
x
2
− − -->
p
y
2
=
1
{\displaystyle x^{2}-py^{2}=1}
ekuazioaren ebazpena bada eta bi osagaiak positiboak badira:
a
>
0
;
b
>
0
{\displaystyle a>0;b>0}
, ebazpen hori ebazpen positibo izendatuko da .(Testuinguru honetan).
Definizioa
p
{\displaystyle p}
Zenbaki arrunt eta ez karratua izanik,
(
x
,
y
)
=
(
a
,
b
)
{\displaystyle (x,y)=(a,b)}
,
x
2
− − -->
p
y
2
=
1
{\displaystyle x^{2}-py^{2}=1}
ekuazioaren oinarrizko ebazpena izendatuko da,
(
a
,
b
)
{\displaystyle (a,b)}
positiboa bada ( hots:
a
>
0
;
b
>
0
{\displaystyle a>0;b>0}
), eta edozein ebazpen positibo emanik:
(
x
,
y
)
=
(
c
,
d
)
⇒ ⇒ -->
b
≤ ≤ -->
d
{\displaystyle (x,y)=(c,d)\Rightarrow b\leq d}
.
Ondorengo proposizioan oinarrizko ebazpena existitzen dela frogatuko da.
Proposizioa
p
{\displaystyle p}
Zenbaki arrunt eta ez karratua izanik,
x
2
− − -->
p
y
2
=
1
{\displaystyle x^{2}-py^{2}=1}
ekuazioak badu oinarrizko ebazpena.
Froga
Dirichleten emaitzagatik:
p
{\displaystyle p}
Zenbaki arrunt eta ez karratua izanik,
x
2
− − -->
p
y
2
=
1
{\displaystyle x^{2}-py^{2}=1}
ekuazioak badu ebazpen ez neutro bat:
(
c
,
d
)
{\displaystyle (c,d)}
, eta beraz:
(
c
,
− − -->
d
)
,
(
− − -->
c
,
d
)
{\displaystyle (c,-d),(-c,d)}
eta
(
− − -->
c
,
− − -->
d
)
{\displaystyle (-c,-d)}
zenbakiak ere ebazpen ez neutroak dira. Horietako bakar bat da positiboa:
(
c
,
d
)
{\displaystyle (c,d)}
positiboa dela suposatuko da orokortasuna galdu gabe. Honela:
c
=
1
+
p
d
2
∈ ∈ -->
N
{\displaystyle c={\sqrt {1+pd^{2}}}\in \mathbb {N} }
⇒ ⇒ -->
∃ ∃ -->
M
i
n
{
y
∈ ∈ -->
N
:
1
+
p
y
2
∈ ∈ -->
N
}
{\displaystyle \Rightarrow \exists Min\{y\in \mathbb {N} :{\sqrt {1+py^{2}}}\in \mathbb {N} \}}
b
=
M
i
n
{
y
∈ ∈ -->
N
:
1
+
p
y
2
∈ ∈ -->
N
}
;
a
=
1
+
p
b
2
{\displaystyle b=Min\{y\in \mathbb {N} :{\sqrt {1+py^{2}}}\in \mathbb {N} \};a={\sqrt {1+pb^{2}}}}
aukeratuz ebazpen minimoa edo oinarrizko ebazpena existitzen da.
Proposizioa
p
{\displaystyle p}
Zenbaki arrunt eta ez karratua izanik,
(
x
,
y
)
=
(
a
,
b
)
{\displaystyle (x,y)=(a,b)}
,
x
2
− − -->
p
y
2
=
1
{\displaystyle x^{2}-py^{2}=1}
ekuazioaren oinarrizko
ebazpena bada. Ebazpen positibo guztiak ondorengo multzoan daude:
{
(
a
n
,
b
n
)
:
a
n
+
b
n
p
=
(
a
+
b
p
)
n
:
n
≥ ≥ -->
1
}
{\displaystyle \{(a_{n},b_{n}):a_{n}+b_{n}{\sqrt {p}}=(a+b{\sqrt {p}})^{n}:n\geq 1\}}
Froga
n
≥ ≥ -->
1
,
(
a
n
,
b
n
)
{\displaystyle n\geq 1,(a_{n},b_{n})}
Ebazpena dela frogatuko da.
(
x
,
y
)
=
(
a
,
b
)
{\displaystyle (x,y)=(a,b)}
Ebazpena denez:
a
2
− − -->
p
b
2
=
1
⇔ ⇔ -->
(
a
− − -->
b
p
)
(
a
+
b
p
)
=
1
{\displaystyle a^{2}-pb^{2}=1\Leftrightarrow (a-b{\sqrt {p}})(a+b{\sqrt {p}})=1}
(
a
+
b
p
)
(
a
− − -->
b
p
)
=
1
⇒ ⇒ -->
∀ ∀ -->
n
≥ ≥ -->
1
,
(
a
+
b
p
)
n
(
a
− − -->
b
p
)
n
=
1
n
=
1
{\displaystyle (a+b{\sqrt {p}})(a-b{\sqrt {p}})=1\Rightarrow \forall n\geq 1,(a+b{\sqrt {p}})^{n}(a-b{\sqrt {p}})^{n}=1^{n}=1}
(
a
+
b
p
)
n
{\displaystyle (a+b{\sqrt {p}})^{n}}
, adierazpena
p
{\displaystyle {\sqrt {p}}}
aldagaia duen
n
{\displaystyle n}
. graduko polinomio gisara ikus daiteke. Newtonen bidezko binomioaren garapena eginez:
(
a
+
b
p
)
n
=
a
n
+
b
n
p
{\displaystyle (a+b{\sqrt {p}})^{n}=a_{n}+b_{n}{\sqrt {p}}}
adierazten bada:
(
a
n
,
b
n
)
{\displaystyle (a_{n},b_{n})}
koefizienteak modu bakarrean determinatzen dira:
a
n
=
(
a
+
b
p
)
n
+
(
a
− − -->
b
p
)
n
2
{\displaystyle a_{n}={\frac {(a+b{\sqrt {p}})^{n}+(a-b{\sqrt {p}})^{n}}{2}}}
,
b
p
{\displaystyle b{\sqrt {p}}}
-ren berretzaile bakoitiak ezabatzen dira.
b
n
=
(
a
+
b
p
)
n
− − -->
(
a
− − -->
b
p
)
n
2
p
{\displaystyle b_{n}={\frac {(a+b{\sqrt {p}})^{n}-(a-b{\sqrt {p}})^{n}}{2{\sqrt {p}}}}}
,
b
p
{\displaystyle b{\sqrt {p}}}
-ren berretzaile bikoitiak ezabatzen dira.
a
n
2
− − -->
b
n
2
p
=
(
a
n
+
b
n
p
)
(
a
n
− − -->
b
n
p
)
=
(
a
+
b
p
)
n
(
a
− − -->
b
p
)
n
=
(
a
2
− − -->
b
2
p
)
=
1
n
=
1
{\displaystyle a_{n}^{2}-b_{n}^{2}{\sqrt {p}}=(a_{n}+b_{n}{\sqrt {p}})(a_{n}-b_{n}{\sqrt {p}})=(a+b{\sqrt {p}})^{n}(a-b{\sqrt {p}})^{n}=(a^{2}-b^{2}{\sqrt {p}})=1^{n}=1}
Edozein ebazpen positibo
(
a
n
,
b
n
)
{\displaystyle (a_{n},b_{n})}
gisakoa dela frogatuko da.
Absurdura bideratuz suposa bedi,
(
u
0
,
v
0
)
{\displaystyle (u_{0},v_{0})}
ebazpen positiboa dela eta ez dela
(
a
n
,
b
n
)
{\displaystyle (a_{n},b_{n})}
gisakoa.
(
a
+
b
p
)
n
{\displaystyle (a+b{\sqrt {p}})^{n}}
segida ertsiki gorakorra denez,
n
{\displaystyle n}
-rekiko:
n
≥ ≥ -->
0
{\displaystyle n\geq 0}
.
∃ ∃ -->
n
≥ ≥ -->
0
:
(
a
+
b
p
)
n
<
u
0
+
v
0
p
<
(
a
+
b
p
)
n
+
1
⇒ ⇒ -->
{\displaystyle \exists n\geq 0:(a+b{\sqrt {p}})^{n}<u_{0}+v_{0}{\sqrt {p}}<(a+b{\sqrt {p}})^{n+1}\Rightarrow }
(
a
+
b
p
)
n
− − -->
1
<
u
0
+
v
0
p
a
+
b
p
<
(
a
+
b
p
)
n
;
n
≥ ≥ -->
1
b
a
d
a
{\displaystyle (a+b{\sqrt {p}})^{n-1}<{\frac {u_{0}+v_{0}{\sqrt {p}}}{a+b{\sqrt {p}}}}<(a+b{\sqrt {p}})^{n};n\geq 1bada}
u
0
+
v
0
p
a
+
b
p
=
(
u
0
+
v
0
p
)
(
a
− − -->
b
p
)
=
u
0
a
− − -->
v
0
b
p
+
(
v
0
a
− − -->
u
0
b
)
p
{\displaystyle {\frac {u_{0}+v_{0}{\sqrt {p}}}{a+b{\sqrt {p}}}}=(u_{0}+v_{0}{\sqrt {p}})(a-b{\sqrt {p}})=u_{0}a-v_{0}bp+(v_{0}a-u_{0}b){\sqrt {p}}}
u
1
=
u
0
a
− − -->
v
0
b
p
;
v
1
=
v
0
a
− − -->
u
0
b
{\displaystyle u_{1}=u_{0}a-v_{0}bp;v_{1}=v_{0}a-u_{0}b}
adieraziz ondorengo emaitza lortu da:
(
a
+
b
p
)
n
− − -->
1
<
u
1
+
v
1
p
<
(
a
+
b
p
)
n
{\displaystyle (a+b{\sqrt {p}})^{n-1}<u_{1}+v_{1}{\sqrt {p}}<(a+b{\sqrt {p}})^{n}}
.
Ikus dezagun
(
u
1
,
v
1
)
=
(
u
0
a
− − -->
v
0
b
p
,
v
0
a
− − -->
u
0
b
)
{\displaystyle (u_{1},v_{1})=(u_{0}a-v_{0}bp,v_{0}a-u_{0}b)}
ebazpena dela.
(
u
0
a
− − -->
v
0
b
p
)
2
− − -->
(
v
0
a
− − -->
u
0
b
)
2
p
=
(
u
0
a
)
2
+
(
v
0
b
p
)
2
− − -->
(
v
0
a
)
2
p
− − -->
(
u
0
b
)
2
p
=
{\displaystyle (u_{0}a-v_{0}bp)^{2}-(v_{0}a-u_{0}b)^{2}p=(u_{0}a)^{2}+(v_{0}bp)^{2}-(v_{0}a)^{2}p-(u_{0}b)^{2}p=}
(
u
0
a
)
2
+
(
v
0
b
p
)
2
− − -->
(
v
0
a
)
2
p
− − -->
(
u
0
b
)
2
p
=
a
2
(
u
0
2
− − -->
v
0
2
p
)
+
b
2
p
(
v
0
2
p
− − -->
u
0
2
)
=
a
2
− − -->
b
2
p
=
1
{\displaystyle (u_{0}a)^{2}+(v_{0}bp)^{2}-(v_{0}a)^{2}p-(u_{0}b)^{2}p=a^{2}(u_{0}^{2}-v_{0}^{2}p)+b^{2}p(v_{0}^{2}p-u_{0}^{2})=a^{2}-b^{2}p=1}
Ikus dezagun
(
u
1
,
v
1
)
=
(
u
0
a
− − -->
v
0
b
p
,
v
0
a
− − -->
u
0
b
)
{\displaystyle (u_{1},v_{1})=(u_{0}a-v_{0}bp,v_{0}a-u_{0}b)}
ebazpen positiboa dela. Edozein ebazpen positibok:
(
u
,
v
)
{\displaystyle (u,v)}
, ondorengo desberdintza betetzen du.
(
u
+
v
p
)
(
u
− − -->
v
p
)
=
1
>
0
⇒ ⇒ -->
0
<
u
− − -->
v
p
<
1
{\displaystyle (u+v{\sqrt {p}})(u-v{\sqrt {p}})=1>0\Rightarrow 0<u-v{\sqrt {p}}<1}
,
(
u
0
,
v
0
)
{\displaystyle (u_{0},v_{0})}
eta
(
a
,
b
)
{\displaystyle (a,b)}
positiboak direnez:
u
1
=
u
0
a
− − -->
v
0
b
p
>
u
0
b
p
− − -->
v
0
b
p
=
(
u
0
− − -->
v
0
p
)
b
p
>
0
{\displaystyle u_{1}=u_{0}a-v_{0}bp>u_{0}b{\sqrt {p}}-v_{0}bp=(u_{0}-v_{0}{\sqrt {p}})b{\sqrt {p}}>0}
.
Ikus dezagun beste osagaia:
v
1
{\displaystyle v_{1}}
positiboa dela. Absurdura bideratuz
v
1
≤ ≤ -->
0
{\displaystyle v_{1}\leq 0}
bada.
(
u
1
)
2
− − -->
(
v
1
)
2
p
=
(
u
1
+
v
1
p
)
(
u
1
− − -->
v
1
p
)
=
1
⇒ ⇒ -->
0
<
u
1
+
v
1
p
<
1
{\displaystyle (u_{1})^{2}-(v_{1})^{2}p=(u_{1}+v_{1}{\sqrt {p}})(u_{1}-v_{1}{\sqrt {p}})=1\Rightarrow 0<u_{1}+v_{1}{\sqrt {p}}<1}
. Eta bestalde:
1
≤ ≤ -->
(
a
+
b
p
)
n
− − -->
1
<
u
1
+
v
1
p
<
(
a
+
b
p
)
n
{\displaystyle 1\leq (a+b{\sqrt {p}})^{n-1}<u_{1}+v_{1}{\sqrt {p}}<(a+b{\sqrt {p}})^{n}}
, ezinezkoa. Eta ondorioz
v
1
{\displaystyle v_{1}}
positiboa da.
Ondorengo errekurrentzi araua ondorioaztatu da. Baldin eta existizen bada
(
u
0
,
v
0
)
{\displaystyle (u_{0},v_{0})}
ebazpen postiboa eta ez dena
(
a
n
,
b
n
)
{\displaystyle (a_{n},b_{n})}
gisakoa, orduan existitzen da
(
u
1
,
v
1
)
{\displaystyle (u_{1},v_{1})}
:ebazpen positiboa, ez dena
(
a
n
,
b
n
)
{\displaystyle (a_{n},b_{n})}
gisakoa, eta
(
u
0
,
v
0
)
{\displaystyle (u_{0},v_{0})}
baino txikiagoa.
(
a
+
b
p
)
n
<
u
0
+
v
0
p
<
(
a
+
b
p
)
n
+
1
⇒ ⇒ -->
(
a
+
b
p
)
n
− − -->
1
<
u
1
+
v
1
p
<
(
a
+
b
p
)
n
{\displaystyle (a+b{\sqrt {p}})^{n}<u_{0}+v_{0}{\sqrt {p}}<(a+b{\sqrt {p}})^{n+1}\Rightarrow (a+b{\sqrt {p}})^{n-1}<u_{1}+v_{1}{\sqrt {p}}<(a+b{\sqrt {p}})^{n}}
Araua
n
{\displaystyle n}
aldiz errepikatuz: Existizen da :
(
u
n
,
v
n
)
{\displaystyle (u_{n},v_{n})}
, ebazpen positboa non:
1
=
(
a
+
b
p
)
0
<
u
n
+
v
n
p
<
a
+
b
p
⇒ ⇒ -->
0
<
v
n
<
b
{\displaystyle 1=(a+b{\sqrt {p}})^{0}<u_{n}+v_{n}{\sqrt {p}}<a+b{\sqrt {p}}\Rightarrow 0<v_{n}<b}
. Eta bestalde
(
a
,
b
)
{\displaystyle (a,b)}
ebazpen minioa izateagatik:
b
≤ ≤ -->
v
0
{\displaystyle b\leq v_{0}}
. Ezinezkoa da.
Ondorioa: edozein ebazpen positibo
(
a
n
,
b
n
)
{\displaystyle (a_{n},b_{n})}
gisakoa da.
Erreferentziak
Ikus, gainera
Kanpo estekak