Fisika nuklearrean, egonkortasun uharteaelementu kimikosuperpisutsuenisotopo jakin batzuek osatzen duten multzoa da, zeintzuek elementu beraren beste isotopoek baino erdibizitza altuagoa duten. Multzo horrek nuklidoen taulan "uharte" baten itxura duela uste da, zeinak jatorrizko eta egonkorrak diren erradionuklidoetatik banandua egon beharko lukeen. Multzoa existitzen dela uste izateko, zientzialariek "zenbaki magikoak" deritzenak hartzen dituzte kontuan, zeintzuek atomo nukleo bateko nukleoi kopurua adierazten duten eta kopuru horri esker isotopo jakin batzuek behar baino egonkortasun handiagoa lortzen duten. Eremu superpisutsuan elementu jakin baten isotopo batek halako zenbaki bat izango balu, litekeena da erdibizitza bereziki altua edukitzea.[1][2]
Hainbat aurreikuspen egin dira egonkortasun uhartearen kokapena aurkitzeko asmoarekin, eta horietatik ondorioztatu daiteke N = 184 aurreikusitako neutroigeruza itxitik gertu kokaturik dagoela uhartea.[3] Hala ere, gehienetan egonkortasun uhartea kopernizioaren eta flerovioaren isotopoen artean dagoela adierazten dute fisikariek. Eredu honek sendotasunez iradokitzen du geruza itxiak are egonkortasun gehiago emango diola isotopoari alfa desintegrazioaren eta fisioaren aurrean. Egonkortasun uhartearen eragin handiena Z = 114 zenbaki atomikoaren eta N = 184-ren artean egongo dela aurreikusten bada ere, inguru horretatik hurbil dauden elementuen isotopoetan egonkortasun gehigarria nabarituko dela ere uste da, gainera, baliteke egonkortasun uharte gehiago egotea magiko bikoitzak diren nuklido pisutsuagoetan. Nuklido magiko bikoitzak protoi eta neutroi kopuruan zenbaki magikoak edukitzeak bereizten ditu. Uhartearen baitan dauden elementuen erdibizitzak minutu batzuetakoak edo egunetakoak izan daitezke kasu gehienetan; baina badira zenbait iragarpen milioika urteko erdibizitza aurreikusten dietenak isotopo jakin batzuei.[4]
Geruza nuklearren eredua 1940ko hamarkadan plazaratu zen eta bertan iragarri ziren lehenbizikoz zenbaki magikoak, alabaina, gaur arte ez dira aurkitu iraupen luzeko nuklido superpisutsuak. Gainerako elementu superpisutsuekin gertatzen den bezala, gaur arte ez da aurkitu iraupen luzeko nuklido superpisutsurik naturan, beraz, suposatzen da soilik oraindik ezaguna ez den erreakzio nuklear artifizial baten bidez era daitezkeela. Zientzialariek gaur gaurkoz ez dute aurkitu halako erreakzio nuklear artifizial bat abiarazteko modurik, litekeena da erreakzio mota berriak behar izatea uhartearen erdiguneko nuklidoak populatzeko. Haatik, sintetizatzea lortu diren azkeneko elementu superpisutsuetan (adibidez, oganesona, 118 protoi eta 177 neutroikoa) ikusi da 110 eta 114 elementuen artean efektu egonkortzaile leun bat dagoela, agian nabarmenagoa egin daitekeena ezezagunak diren isotopoak aurkitzen joan ahala.[3][5]