|
Este artÃculo o sección contiene una guÃa de aprendizaje, contenido no enciclopédico que deberÃa estar en Wikiversidad [buscar en Wikiversidad] Si modificas el contenido dándole una orientación enciclopédica, por favor, quita este aviso. Si trasladas el contenido al proyecto correspondiente, no olvides indicar allà que proviene de aquÃ, y luego, por favor, quita este aviso. | |
La Transformada de Laplace es una herramienta muy poderosa para la resolución de Circuito RLC. La ecuación diferencial que está en el dominio del tiempo mediante la Transformada de Laplace pasan al dominio en campo s, dominio de Laplace. Una vez resuelto, efectuando las respectivas operaciones algebraicas, se aplica la Transformada Inversa de Laplace para obtener la respuesta en el dominio del tiempo.
Las técnicas de Transformada de Laplace son muy útiles para resolver ecuaciones con condiciones iniciales.
Definición
Para un la Transformada de Laplace se define como:
Función
Aplicando la Transformada de Laplace se puede mostrar la equivalencia de una resistencia, una bobina, y un condensador en función de sus condiciones iniciales en serie:
Resistencia
Bobina
es la corriente de la bobina en el instante
Condensador
es el voltaje en el condensador en el instante
Aplicación
Para analizar un circuito RLC usando la transformada de Laplace hay dos métodos:
1º Escribir las ecuaciones temporales, aplicar la transformada de Laplace, resolver en el dominio de Laplace y finalmente volver al dominio del tiempo usando la transformada inversa.
2º Escribir el circuito equivalente en el dominio de Laplace y resolver directamente en él (con atención a las condiciones iniciales).
Si el objetivo es conocer la respuesta en frecuencia no es necesario volver al dominio temporal.
Ejemplo 1
Hallar ; para , siendo cuyas condiciones iniciales son
Solución
<p?
Mediante Fracciones Parciales se tiene:
Desarrollando
Entonces
Aplicando la Transformada Inversa de Laplace obtenemos la solución del problema en el dominio del tiempo
Ejemplo 2: reparto de carga entre dos condensadores
Enunciado: supongamos dos condensadores: C1 y C2 que contienen una carga inicial bien genial expresada por los voltajes y . Los condensadores están conectados a través de una resistencia R y un interruptor ideal (sin resistencia y que conmuta instantáneamente). Si el interruptor se cierra en el instante t=0, calcular: la corriente máxima y el voltaje final.
Solución:
Despejando la corriente I(s) resulta:
Donde , es decir el equivalente serie de los dos condensadores. Note que los condensadores están conectados en serie a través de tierra.
Utilizando una tabla de transformadas inversas se puede volver al dominio del tiempo: . Ahora ya podemos responder a la primera pregunta: la corriente en el instante t=0 es , es decir: la diferencia de voltajes iniciales entre la resistencia.
El voltaje final puede calcularse por el principio de conservación de la carga. Sin embargo, aquà lo vamos a obtener utilizando Laplace. Nótese que la corriente final es cero, es decir, después de un cierto tiempo los voltajes v1 y v2 convergen. Asà que podemos calcular el voltaje final a través de v1 o v2 indistintamente. La ecuación para es:
Para calcular la transformada inversa hace falta descomponer la primera fracción como se explica en el ejemplo 1. Sin embargo no es necesario para calcular el valor final de puesto que podemos aplicar el teorema del valor final . Al resolver el lÃmite el voltaje final queda:
que es el mismo resultado que se obtiene aplicando el principio de conservación de la carga.
Véase también