En geometría, el punto de Exeter es un punto especial asociado con cualquier triángulo. Es uno de los puntos característicos o "centros" de un triángulo, designado como centro X(22) en la Enciclopedia Clark Kimberling de Puntos Notables del Triángulo.[1] Fue descubierto en un taller de matemáticas por ordenador en la Academia Phillips Exeter en 1986[2] (la ciudad de Exeter, sede de la academia , pertenece al estado de New Hampshire).
Es uno de los puntos notables de un triángulo definidos más recientemente, a diferencia de los puntos clásicos como el centroide, el incentro, o el punto de Steiner, conocidos en algunos casos desde la más remota antigüedad.[3]
Sea ABC un triángulo cualquiera dado. Trácense las medianas a través de los vértices A, B y C; conocida la circunferencia circunscrita del triángulo ABC, se obtienen sus intersecciones A', B' y C' con las medianas. Se construye el triángulo DEF, formado por las tangentes en A, B, y C a la circunferencia anterior (siendo D el vértice opuesto al lado formado por la tangente en el vértice A; E el vértice opuesto al lado formado por la tangente en el vértice B; y F el vértice opuesto al lado formado por la tangente en el vértice C). Las líneas a través de DA', EB' y FC' son concurrentes, y su punto de intersección es el punto de Exeter del triángulo ABC.