En álgebra moderna, un ideal es una subestructura algebraica definida en la teoría de anillos. Los ideales generalizan, de manera fecunda, el estudio de la divisibilidad entre los números enteros hacia otros objetos matemáticos. De este modo, es posible enunciar versiones muy generales de teoremas de la aritmética elemental, tales como el teorema chino del resto o el teorema fundamental de la aritmética, válidos para los ideales. Se puede comparar también esta noción con la de subgrupo normal para la estructura algebraica de grupo en el sentido de que facilita definir la noción de anillo cociente como una extensión natural de la noción de grupo cociente.[1]
Aspecto histórico
La teoría de los ideales es relativamente reciente, puesto que fue creada por el matemático alemán, Richard Dedekind, a fines del siglo XIX. En dicha época, una parte de la comunidad matemática se interesó en los números algebraicos y, más concretamente, en los enteros algebraicos.
La cuestión consiste en saber si los enteros algebraicos se comportan como los enteros relativos, particularmente, en lo que respecta a su descomposición en factores primos. Parecía claro, desde el comienzo del siglo XIX que este no era siempre el caso. Por ejemplo, el entero 6 puede descomponerse, en el anillo , en la forma o en la forma .
Ernst Kummer señaló entonces que la cuestión anterior va a depender de los números en cuestión, e inventó la noción de complejos ideales.
La idea es hacer que sea única la descomposición en factores primos añadiendo artificialmente otros números (del mismo modo que se añade i a los números reales siendo con el fin de disponer de números para los cuadrados negativos). Para el ejemplo de más arriba, se van a "inventar" cuatro números "ideales" a, b, c y d tales que:
Así, 6 se descompondrá de manera única en:
Dedekind en 1871 vuelve a usar la noción de número ideal de Kummer y crea la noción de ideal en un anillo. Se interesa principalmente por los anillos de los enteros algebraicos, es decir, anillos conmutativos unitarios e íntegros. En este dominio se encuentran los resultados más interesantes sobre los ideales. Creó el conjunto de los ideales de un anillo conmutativo, unitario e íntegro para operaciones semejantes a la adición y a la multiplicación de los enteros relativos.
La teoría de los ideales no solo permitió un avance significativo en el álgebra general, sino también en el estudio de las curvas algebraicas (geometría algebraica).
Definición
Un subconjunto no vacío de un anillo es un ideal por la izquierda de si:
- es un subgrupo aditivo de .
- (El producto por la izquierda de un elemento de por un elemento de pertenece a ).
y es un ideal por la derecha de si:
- es un subgrupo aditivo de .
- (El producto por la derecha de un elemento de por un elemento de pertenece a ).
Un ideal bilátero es un ideal por la derecha y por la izquierda. En un anillo conmutativo, las nociones de ideal por la derecha, de ideal por la izquierda y de ideal bilátero coinciden y simplemente se habla de ideal.
Ejemplos
- Para todo entero relativo , es un ideal de .
- Si A es un anillo, {0} y A son ideales triviales de A. Estos dos ideales tienen un interés muy limitado. Por esta razón se llamará ideal propio a todo ideal no trivial.
- Si A es un anillo unitario y si es un ideal que contiene a 1 entonces . De modo más general, si, contiene un elemento inversible, entonces
- Los únicos ideales en un cuerpo son los ideales triviales.
Operaciones con ideales
Suma
Si I y J son dos ideales de un anillo A, entonces se puede comprobar que el conjunto es un ideal.
Demostración
|
Para comprobar que el aserto es correcto, debemos comprobar en primer lugar que I+J es subgrupo del grupo aditivo de A, i.e., , y en segundo lugar tendremos que comprobar que .
- En primer lugar, sea tales que . Como son ideales, entonces son subgrupos de y por ende, , de manera que es un elemento del conjunto . Ergo, , por lo tanto es subgrupo de .
- En segundo lugar, sea . . Por ser ideales de A se tiene que . De este modo, .
- Con esto queda demostrado que era correcta la afirmación enunciada.
|
Intersección
Toda intersección de ideales es un ideal.
Demostración
|
Sea una familia de ideales , queremos comprobar que es ideal:
- Comprobemos que es subgrupo del grupo aditivo . Sean , entonces se tiene que . Como los son ideales, entonces , por lo que a su vez se tiene que . Por consiguiente I es subgrupo de .
- Comprobemos ahora que . . Ahora bien, como los son ideales, sabemos que . Por consiguiente .
- Queda con esto demostrado el aserto anterior, i.e., es ideal, siendo una familia arbitraria de ideales de A.
|
El conjunto de los ideales de A con estas dos operaciones forma una cadena. De esta segunda ley se permite la noción de ideal generado. Si P es un subconjunto de un anillo A, se llama ideal generado por P a la intersección de todos los ideales de A que contienen a P, notado usualmente como . Se puede comprobar que:
Ejemplos:
- Para un anillo , a ∈ A engendra el ideal (por ejemplo n engendra , ideal de )
- Si I y J son dos ideales de A, el ideal está engendrado por el subconjunto de A.
Producto
Si I y J son dos ideales de un anillo, se llama producto de I y J al ideal constituido por todos los elementos de la forma xy donde x pertenece a I e y pertenece a J. Se tiene que .
Como ejemplo, en el anillo , el producto de los ideales y es el ideal y este último está incluido en .
Anillo cociente
Si I es un ideal bilátero del anillo A, la relación es una relación de equivalencia compatible con las dos leyes del anillo. Se puede crear entonces, sobre el conjunto de las clases una estructura de anillo denominada anillo cociente A/ I del anillo A por el ideal I. La construcción se realiza sobre la base del grupo aditivo del anillo. Cabe tomar como elementos de A/I las clases adjuntas a + I( llamadas «clases de restos respecto al módulo del ideal I»).
Como suma de clases se define por (a +I) +º (b+ I) =(a+b) + L; el opuesto -º(a+I) = -a + I.
Como producto de clases (a+I) ׺ (b+I)= ab + I.[2]
Casos particulares
Ideal principal: es un ideal generado por un único elemento.
Ideal primario: en un anillo conmutativo unitario, un ideal I es primario si y solo si para todo a y b tales que , si entonces existe un entero natural n tal que .
Ideal primo: en un anillo conmutativo unitario, I es un ideal primo si y solo si I es distinto de A y, para todo a y b pertenecientes a A tales que , si entonces .
- es un ideal primo de es dominio de integridad.
Ideal irreducible : en un anillo conmutativo unitario, un ideal I es irreducible si no se puede escribir como intersección de dos ideales J y K diferentes de I.
Ideal maximal : Un ideal es maximal existen exactamente dos ideales que contienen a , a saber, y el mismo .
- En un anillo conmutativo unitario, un ideal maximal es necesariamente primo.
- El ideal es un ideal maximal de si y solo si es un cuerpo.
Radical de un ideal: Si I es un ideal de un anillo conmutativo A, se llama radical de I, y se escribe , al conjunto de los elementos x de A tales que existe un entero natural n para el cual . Es un ideal de A.
- Ejemplo: es el radical de
- Si es un anillo conmutativo, entonces tiene las propiedades siguientes:
- Si, además, es unitario,
Referencias
- ↑ A.I. Kostrikin. «Introducción al álgebra» Editorial Mir, Moscú (1983)
- ↑ Kostrikin. Op. cit.
Véase también
Enlaces externos