Distribución de Poisson

Distribución de Poisson.
=
El eje horizontal es el índice x. La función solamente está definida en valores enteros de k. Las líneas que conectan los puntos son solo guías visuales y no indican continuidad.
Función de densidad de probabilidad
=
El eje horizontal es el índice k.
Función de distribución de probabilidad
Parámetros
Dominio
Función de probabilidad (fp)
Función de distribución (cdf) (donde Γ(xy) es la función gamma incompleta)
Media
Mediana
Moda
Varianza
Coeficiente de simetría
Curtosis
Entropía
Función generadora de momentos (mgf)
Función característica

En teoría de probabilidad y estadística, la distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad de que ocurra un determinado número de eventos durante cierto período de tiempo. Concretamente, se especializa en la probabilidad de ocurrencia de sucesos con probabilidades muy pequeñas, o sucesos «raros». También puede utilizarse para contar el número de eventos o partículas consideradas puntuales en otros tipos de intervalos específicos, como la distancia, el área o el volumen.

Fue propuesta por Siméon-Denis Poisson, que la dio a conocer en 1838 en su trabajo Recherches sur la probabilité des jugements en matières criminelles et matière civile (Investigación sobre la probabilidad de los juicios en materias criminales y civiles).

Por ejemplo, un centro de llamadas recibe una media de 180 llamadas por hora, 24 horas al día. Las llamadas son independientes; recibir una no cambia la probabilidad de que llegue la siguiente. El número de llamadas recibidas durante cualquier minuto tiene una distribución de probabilidad de Poisson con media 3: los números más probables son 2 y 3, pero 1 y 4 también son probables y hay una pequeña probabilidad de que sea tan bajo como cero y una probabilidad muy pequeña de que pueda ser 10.

Otro ejemplo es el número de desintegraciones que se producen en una fuente radiactiva durante un periodo de observación determinado.

Historia

La distribución fue introducida por primera vez por Siméon Denis Poisson (1781-1840) y publicada junto con su teoría de la probabilidad en su obra Recherches sur la probabilité des jugements en matière criminelle et en matière civile (1837).[1]​ El trabajo teorizaba sobre el número de condenas injustas en un país determinado centrándose en ciertas variables aleatorias N que cuentan, entre otras cosas, el número de sucesos discretos (a veces llamados "eventos" o "llegadas") que tienen lugar durante un intervalo de tiempo-intervalo de duración determinada. El resultado ya había sido dado en 1711 por Abraham de Moivre en De Mensura Sortis seu; de Probabilitate Eventuum in Ludis a Casu Fortuito Pendentibus .[2][3][4][5]​. Esto la convierte en un ejemplo de ley de Stigler y ha llevado a algunos autores a defender que la distribución de Poisson debería llevar el nombre de Moivre.[6]

En 1860, Simon Newcomb ajustó la distribución de Poisson al número de estrellas encontradas en una unidad de espacio.[7]​ Otra aplicación práctica de esta distribución fue realizada por Ladislaus Bortkiewicz en 1898, cuando se le encomendó la tarea de investigar el número de soldados del ejército prusiano muertos accidentalmente por patadas de caballos;[8]​ este experimento introdujo la distribución de Poisson en el campo de la ingeniería de la fiabilidad.

Definición

La distribución de Poisson es popular porque modela el número de veces que ocurre un evento en un intervalo de tiempo.

Notación

Sea y una variable aleatoria discreta, si la variable aleatoria tiene una distribución de Poisson con parámetro entonces escribiremos o .

Función de probabilidad

Una variable aleatoria discreta X se dice que tiene una distribución de Poisson, con parámetro si tiene una función de probabilidad dada por:[9]

donde

  • k es el número de ocasiones ()
  • e es número de Euler ()
  • ! es la función factorial.

Ejemplo

El número de chicles en una misma baldosa tiene una distribución de Poisson aproximada

La distribución de Poisson puede ser útil para modelizar sucesos como:

  • El número de meteoritos de más de 1 metro de diámetro que chocan contra la Tierra en un año;
  • el número de fotones láser que chocan contra un detector en un intervalo de tiempo determinado; y
  • el número de estudiantes que obtienen una nota baja y una nota alta en un examen.

Supuestos y validez

La distribución de Poisson es un modelo apropiado si se cumplen los siguientes supuestos:

  • k es el número de veces que ocurre un suceso en un intervalo y k puede tomar los valores 0, 1, 2, ... .
  • La ocurrencia de un suceso no afecta a la probabilidad de que ocurra un segundo suceso. Es decir, los sucesos ocurren de forma independiente.
  • La tasa media a la que se producen los sucesos es independiente de cualquier suceso. Para simplificar, se suele suponer que es constante, pero en la práctica puede variar con el tiempo.
  • Dos sucesos no pueden ocurrir exactamente en el mismo instante; en cambio, en cada subintervalo muy pequeño, o bien ocurre exactamente un suceso, o no ocurre ningún suceso.

Si estas condiciones son ciertas, entonces k es una variable aleatoria de Poisson, y la distribución de k es una distribución de Poisson.

La distribución de Poisson es también el límite de una distribución binomial, para la cual la probabilidad de éxito de cada ensayo es igual a λ dividida por el número de ensayos, a medida que el número de ensayos se aproxima a infinito (véase Distribuciones relacionadas).

Función de probabilidad

Si entonces la función de probabilidad es

donde es el número de ocurrencias del evento o fenómeno.

El parámetro representa el número de veces que se espera que ocurra dicho fenómeno durante un intervalo dado. Por ejemplo, si el suceso estudiado tiene lugar en promedio 4 veces por minuto y estamos interesados en la probabilidad de que ocurra veces dentro de un intervalo de 10 minutos, usaremos un modelo de distribución de Poisson con λ = 10×4 = 40.

Fórmula Recursiva

En ocasiones, para calcular las probabilidades, se utiliza la siguiente fórmula recursiva para calcular en términos de

por lo tanto

siempre que .

Propiedades

Si entonces la variable aleatoria satisface algunas propiedades.

Media

La media de la variable aleatoria es

Esta se demuestra por definición de esperanza matemática

Varianza

La varianza de la variable aleatoria es

Demostración
Tenemos que .

Como

obtenemos que

Es decir, tanto el valor esperado como la varianza de una variable aleatoria con distribución de Poisson son iguales a .

Momentos

Los momentos de orden superior son polinomios de Touchard en cuyos coeficientes tienen una interpretación combinatoria. De hecho, cuando el valor esperado de la distribución de Poisson es 1, entonces según la fórmula de Dobinski, el -ésimo momento iguala al número de particiones de tamaño .

Moda

La moda de la variable aleatoria es

esto es, el mayor de los enteros menores que (los símbolos representan la función parte entera).

Función generadora de momentos

La función generadora de momentos de la distribución de Poisson está dada por

Las variables aleatorias de Poisson tienen la propiedad de ser infinitamente divisibles.

La divergencia Kullback-Leibler desde una variable aleatoria de Poisson de parámetro a otra de parámetro es

Intervalo de confianza

Un criterio fácil y rápido para calcular un intervalo de confianza aproximada de es propuesto por Guerriero (2012).[10]​ Dada una serie de eventos k (al menos el 15-20) en un periodo de tiempo T, los límites del intervalo de confianza para la frecuencia vienen dadas por:

entonces los límites del parámetro están dadas por:.

Relación con otras distribuciones

Sumas de variables aleatorias de Poisson

La suma de variables aleatorias de Poisson independientes es otra variable aleatoria de Poisson cuyo parámetro es la suma de los parámetros de las originales. Dicho de otra manera, si

son N variables aleatorias de Poisson independientes, entonces

.

Distribución binomial

La distribución de Poisson es el caso límite de la distribución binomial. De hecho, si los parámetros n y de una distribución binomial tienden a infinito (en el caso de n) y a cero (en el caso de ) de manera que se mantenga constante, la distribución límite obtenida es de Poisson.

Aproximación normal

Como consecuencia del teorema central del límite, para valores grandes de , una variable aleatoria de Poisson X puede aproximarse por otra normal dado que el cociente

converge a una distribución normal de media 0 y varianza 1.

Distribución exponencial

Supóngase que para cada valor t > 0, que representa el tiempo, el número de sucesos de cierto fenómeno aleatorio sigue una distribución de Poisson de parámetro λt. Entonces, los tiempos transcurridos entre dos sucesos sucesivos sigue la distribución exponencial.

Ejemplo

Si el de los libros encuadernados en cierto taller tienen encuadernación defectuosa, para obtener la probabilidad de que de libros encuadernados en este taller tengan encuadernaciones defectuosas usamos la distribución de Poisson, si se define como el número de libros que tengan encuadernación defectuosa entonces y (el valor esperado de libros defectuosos) es el de , es decir, . Por lo tanto, la probabilidad buscada es:

Procesos de Poisson

La distribución de Poisson se aplica a varios fenómenos discretos de la naturaleza (esto es, aquellos fenómenos que ocurren 0, 1, 2, 3,etc. veces durante un periodo definido de tiempo o en un área determinada y con un número definido de grados de libertad) cuando la probabilidad de ocurrencia del fenómeno es constante en el tiempo o el espacio. Ejemplos de estos eventos que pueden ser modelados por la distribución de Poisson incluyen:

  • El número de autos que pasan a través de un cierto punto en una ruta (suficientemente distantes de los semáforos) durante un periodo definido de tiempo.
  • El número de errores de ortografía que uno comete al escribir una única página.
  • El número de llamadas telefónicas en una central telefónica por minuto.
  • El número de servidores web accedidos por minuto.
  • El número de animales muertos encontrados por unidad de longitud de ruta.
  • El número de mutaciones de determinada cadena de ADN después de cierta cantidad de radiación.
  • El número de núcleos atómicos inestables que se han desintegrado en un determinado período.
  • El número de estrellas en un determinado volumen de espacio.
  • La distribución de receptores visuales en la retina del ojo humano.
  • La inventiva[11]​ de un inventor a lo largo de su carrera.

Enlaces externos

Referencias

  1. Poisson, Siméon D. (1837). Probabilité des jugements en matière criminelle et en matière civile, précédées des règles générales du calcul des probabilités [Research on the Probability of Judgments in Criminal and Civil Matters] (en francés). Paris, France: Bachelier. 
  2. de Moivre, Abraham (1711). «De mensura sortis, seu, de probabilitate eventuum in ludis a casu fortuito pendentibus» [On the Measurement of Chance, or, on the Probability of Events in Games Depending Upon Fortuitous Chance]. Philosophical Transactions of the Royal Society (en latín) 27 (329): 213-264. 
  3. de Moivre, Abraham (1718). The Doctrine of Chances: Or, A Method of Calculating the Probability of Events in Play. London, Great Britain: W. Pearson. ISBN 9780598843753. 
  4. de Moivre, Abraham (1721). «Of the Laws of Chance». En Motte, Benjamin, ed. The Philosophical Transactions from the Year MDCC (where Mr. Lowthorp Ends) to the Year MDCCXX. Abridg'd, and Dispos'd Under General Heads (en latín) I. London, Great Britain: R. Wilkin, R. Robinson, S. Ballard, W. and J. Innys, and J. Osborn. pp. 190-219. 
  5. Johnson, Norman L.; Kemp, Adrienne W.; Kotz, Samuel (2005). «Poisson Distribution». Univariate Discrete Distributions (3rd edición). New York, NY, USA: John Wiley & Sons, Inc. pp. 156-207. ISBN 978-0-471-27246-5. 
  6. Stigler, Stephen M. (1982). «Poisson on the Poisson Distribution». Statistics & Probability Letters 1 (1): 33-35. doi:10.1016/0167-7152(82)90010-4. 
  7. Newcomb, Simon (1860). «Notes on the theory of probabilities». The Mathematical Monthly 2 (4): 134-140. 
  8. von Bortkiewitsch, Ladislaus (1898). Das Gesetz der kleinen Zahlen (en alemán). Leipzig, Germany: B.G. Teubner. pp. 1, 23-25. 
    On page 1, Bortkiewicz presents the Poisson distribution.
    On pages 23–25, Bortkiewitsch presents his analysis of "4. Beispiel: Die durch Schlag eines Pferdes im preußischen Heere Getöteten." [4. Example: Those killed in the Prussian army by a horse's kick.]
  9. Yates, Roy D.; Goodman, David J. (2014). Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers (2nd edición). Hoboken, NJ: Wiley. ISBN 978-0-471-45259-1. 
  10. Guerriero V. «Power Law Distribution: Method of Multi-scale Inferential Statistics». J. Mod. Math. Fr. Archivado desde el original el 21 de febrero de 2018. Consultado el 30 de octubre de 2017. 
  11. Invention and Inventivity Is a Random, Poisson Process: A Potential Guide to Analysis of General Creativity http://www.leaonline.com/doi/pdfplus/10.1207/s15326934crj1103_3

Bibliografía

Véase también

Read other articles:

Peta menunjukkan lokasi Patnanungan Patnanungan adalah munisipalitas yang terletak di provinsi Quezon, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 14.813 jiwa dan 2.673 rumah tangga. Pembagian wilayah Secara administratif Patnanungan terbagi menjadi 6 barangay, yaitu: Amaga Busdak Kilogan Luod Patnanungan Norte Patnanungan Sur (Pob.) Pranala luar Philippine Standard Geographic Code Diarsipkan 2012-04-13 di Wayback Machine. 1995 Philippine Census Information Diarsipk...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Warner Records (atau Warner Bros.) adalah perusahaan rekaman yang merupakan cabang dari perusahaan multinasional Warner Music Group. Warner Bros. berbasis di Burbank, California, Amerika Serikat. Warner Bros. banyak melabeli musisi-musisi tingkat Internasional. Pranala luar Situs web resmi Channel Warner Bros. di YouTube Artikel bertopik perusahaan ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Mitsubishi F-2 – ...

 

Indian film director (1931–2022) Tarun MajumdarMajumder at the Kolkata Book Fair, 2018Born(1931-01-08)8 January 1931Bogra, Bengal, British IndiaDied4 July 2022(2022-07-04) (aged 91)Kolkata, West Bengal, IndiaNationalityIndianAlma materSt. Paul's Cathedral Mission CollegeScottish Church CollegeUniversity of CalcuttaOccupationFilm directorYears active1959–2018SpouseSandhya RoyAwardsPadma ShriNational AwardBFJA AwardFilmfare AwardAnandalok Award Tarun Majumdar (or Mazumdar, 8 ...

 

Daniel CraigDaniel Craig dalam acara penayangan perdana film Skyfall di Sydney (2012)LahirDaniel Wroughton Craig2 Maret 1968 (umur 56)KebangsaanInggrisAlmamaterSekolah Tinggi Musik dan Drama GuidhallPekerjaanAktor, produser filmTahun aktif1992–sekarangDikenal atasPemeran James BondSuami/istriFiona Loudon (1992–1994)Rachel Weisz (2011–kini)PasanganHeike Makatsch (1994–2001)Satsuki Mitchell (2004–2010)AnakElla CraigOrang tuaTimothy John Wroughton Craig (ayah)Olivia Williams...

This article is about Jackson Browne album. For other uses, see Pretender (disambiguation) § Music. 1976 studio album by Jackson BrowneThe PretenderStudio album by Jackson BrowneReleasedNovember 1976Recorded1976StudioSunset Sound (Hollywood)GenreRockLength35:07LabelAsylumProducerJon LandauJackson Browne chronology Late for the Sky(1974) The Pretender(1976) Running on Empty(1977) The Pretender is the fourth album by the American singer-songwriter Jackson Browne, released in 1976....

 

Pour les articles homonymes, voir Fantôme (homonymie). Le Fantôme Comic Auteur Lee Falk Scénario Lee FalkTony DePaul (après la mort de Lee Falk) Dessin Lee FalkPaul Ryan et Graham Nolan (après la mort de Lee Falk) Personnages principaux Le Fantôme Lieu de l’action Le Bengala (pays fictif d'Afrique) Époque de l’action Du XVIe siècle à nos jours Pays États-Unis Langue originale Anglais Titre original The Phantom Autres titres FantômeLe Fantôme du Bengale Première publicat...

 

Overview of football in Kolkata Mohun Bagan taking on Bayern Munich at the Salt Lake Stadium in 2008. Football is one of the most popular sports in Kolkata, West Bengal.[1][2] East Bengal, Mohun Bagan and Mohammedan are the heart of Kolkata football. The rivalry between Mohun Bagan and East Bengal, originating from the Calcutta Football League as the Kolkata derby, is one of the fiercest in the world and considered among the flagship events in the Indian footballing calendar.&...

Traditional Taiwanese pork dish This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Pork ball – news · newspapers · books · scholar · JSTOR (February 2013) (Learn how and when to remove this message) Pork ballA bowl of pork ball soupTraditional Chinese貢丸Simplified Chinese贡丸Literal meaningpounded bal...

 

Bella e la bestiaBella e la Bestia nel giardino del castelloTitolo originaleBeauty and the Beast PaeseStati Uniti d'America Anno1976 Formatofilm TV Generedrammatico, fantastico Durata74 min Lingua originaleinglese Rapporto4:3 CreditiRegiaFielder Cook SoggettoLa bella e la bestia di Jeanne-Marie Leprince de Beaumont SceneggiaturaSherman Yellen Interpreti e personaggi George C. Scott: la Bestia/il Re Trish Van Devere: Bella Bernard Lee: padre di Bella Virginia McKenna: Lucy, prima sorella P...

 

First Cevallos expeditionPart of the Fantastic War and the Anglo-Spanish WarA painting of the Anglo-Portuguese bombardment of Colonia del SacramentoDate3 September 1762 – 24 April 1763LocationSouth AmericaResult Spanish victoryBelligerents Spain Portugal  Great Britain Commanders and leaders Antonio de Cevallos Vicente da Silva Robert McNamara † Strength 1 frigate 1 merchantman 3 dispatch boats 12 gunboats 15 troopships 2,700 soldiers 1 ship of the line 2 frigates 2 troopsh...

Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна  УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі ор...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Southwest Gas – news · newspapers · books · scholar · JSTOR (May 2015) (Learn how and when to remove this message) Southwest Gas Holdings, Inc.Company typePublicTraded asNYSE: SWXS&P 400 ComponentFoundedMarch 1931; 93 years ago (...

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

Stele recovered from Sippa Tablet of ShamashTablet of ShamashMaterialLimestoneSizeLength: 29.2 cm, Width: 17.8 cmCreated888–855 BCPresent locationBritish Museum, London. Room 55.RegistrationME 91000 The Tablet of Shamash (also known as the Sun God Tablet or the Nabuapaliddina Tablet) is a stele recovered from the ancient Babylonian city of Sippar in southern Iraq in 1881; it is now a major piece in the British Museum's ancient Middle East collection and is a visual attestation of Babylonian...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2016. Nilai jual (bahasa Inggris: marketable value) merupakan batu pertama/dasar struktur ekonomi.[1] Nilai bentukan adalah batu pertama/dasar sistem kontradiksi-kontradiksi ekonomi.[1] Referensi ^ a b Marx, Karl (2004). Kemiskinan Filsafat...

Fictional story typically featuring folkloric fantasy characters and magic For other uses, see Fairy tale (disambiguation). The European fairy tale Little Red Riding Hood and the Wolf in a painting by Carl Larsson in 1881. A fairy tale (alternative names include fairytale, fairy story, magic tale, or wonder tale) is a short story that belongs to the folklore genre.[1] Such stories typically feature magic, enchantments, and mythical or fanciful beings. In most cultures, there is no cle...

 

Village and civil parish in Devon, England Loxhore parish church Loxhore is a small village, civil parish and former manor in the local government district of North Devon in the county of Devon, England. The parish, which lies about five miles north-east of the town of Barnstaple, is surrounded clockwise from the north by the parishes of Arlington, Bratton Fleming and Shirwell.[1] In 2001 its population was 153, down from the 202 residents it had in 1901.[2] The parish church,...