En las ciencias experimentales, los descubrimientos científicos se organizan por medio de métodos, modelos y teorías con el fin de generar nuevos conocimientos e investigaciones. Para llevarlas a cabo se establecen previamente unos criterios de verdad, metodologías, un marco conceptual o teórico y un protocolo de investigación. La aplicación de esos métodos y conocimientos conduce a la generación de nuevos conocimientos en forma de predicciones concretas, cuantitativas y comprobables referidas a observaciones pasadas, presentes y futuras. Con frecuencia esas predicciones se pueden formular mediante razonamientos y estructurar como reglas o leyes generales, que dan cuenta del comportamiento de un sistema y predicen cómo actuará dicho sistema en determinadas circunstancias.
Desde la revolución científica, el conocimiento científico ha aumentado tanto que los científicos se han vuelto especialistas y sus publicaciones se han vuelto muy difíciles de leer para los no especialistas.[3] Esto ha dado lugar a diversos esfuerzos de divulgación científica, tanto para acercar la ciencia al gran público, como para facilitar la compresión y colaboración entre científicos de distintos campos.[3]
La historia de la ciencia abarca el desarrollo de la ciencia desde la Antigüedad hasta el presente. La ciencia es un conocimiento empírico, teórico y de procedimiento sobre el universo, producido por científicos que formulan explicaciones y predicciones comprobables basadas en sus observaciones.[4] Hay tres ramas principales de la ciencia: natural, social y formal.[5]
Las primeras raíces de la ciencia se remontan al Antiguo Egipto y Mesopotamia alrededor de 3000 a 1200 A. C.[6][7] Sus contribuciones a las matemáticas, la astronomía y la medicina entraron y dieron forma a la filosofía natural griega de la Antigüedad clásica, mediante la cual se hicieron intentos formales para proporcionar explicaciones de eventos en el mundo físico basadas en causas naturales.[6][7] Después de la caída del Imperio romano occidental, el conocimiento de las concepciones griegas del mundo se deterioró en Europa occidental de habla latina durante los primeros siglos (400 a 1000 EC) de la Edad Media,[8] pero continuó prosperando en el Imperio Romano Oriental (o Bizantino) de habla griega. Con la ayuda de traducciones de textos griegos, la cosmovisión helenística se conservó y se absorbió en el mundo musulmán de habla árabe durante la Edad de Oro islámica.[9] La recuperación y asimilación de obras griegas y las investigaciones islámicas en Europa occidental desde el siglo X al XIII revivieron el aprendizaje de la filosofía natural en Occidente.[8][10]
La filosofía natural se transformó durante la Revolución Científica en la Europa de los siglos XVI al XVII,[11][12] a medida que nuevas ideas y descubrimientos se apartaron de las concepciones y tradiciones griegas anteriores.[13][14][15][16] La Nueva Ciencia que surgió era más mecanicista en su cosmovisión, más integrada con las matemáticas y más confiable y abierta ya que su conocimiento se basaba en un método científico recién definido.[14][17][18] Pronto siguieron más "revoluciones" en los siglos siguientes. La revolución químicadel siglo XVIII por ejemplo, introdujo nuevos métodos cuantitativos y medidas para la química. En el siglo XIX se enfocaron nuevas perspectivas con respecto a la conservación de la energía, la edad de la Tierra y la evolución.[19][20][21][22][23][24] Y en el siglo XX nuevos descubrimientos en genética y física sentaron las bases para nuevas subdisciplinas como la biología molecular y la física de partículas.[25][26] Además, las preocupaciones industriales y militares, así como la creciente complejidad de los nuevos esfuerzos de investigación, pronto marcaron el comienzo de la era de la " gran ciencia ", particularmente después de la Segunda Guerra Mundial.[25][26][27]
Culturas tempranas
Las primeras raíces de la ciencia se remontan al Antiguo Egipto y a la Mesopotamia en torno a los años 3000 a 1200 a. C.[28] Aunque las palabras y los conceptos de "ciencia" y "naturaleza" no formaban parte del paisaje conceptual de la época, los antiguos egipcios y mesopotámicos hicieron aportaciones que más tarde encontrarían un lugar en la ciencia griega y medieval: las matemáticas, la astronomía y la medicina.[28][29] A partir de alrededor del año 3000 a. C., los antiguos egipcios desarrollaron un sistema de numeración de carácter decimal y orientaron sus conocimientos de geometría a la resolución de problemas prácticos, como los de los topógrafos y constructores.[28] Incluso desarrollaron un calendario oficial que contenía doce meses, de treinta días cada uno, y cinco días al final del año.[28] Los antiguos pueblos de Mesopotamia utilizaban los conocimientos sobre las propiedades de diversos productos químicos naturales para la fabricación de cerámica, loza, vidrio, jabón, metales, yeso de cal e impermeabilización;[30] también estudiaban la fisiología animal, la anatomía y el comportamiento con fines divinatorios[30] y realizaban amplios registros de los movimientos de los objetos astronómicos para su estudio de la astrología.[31] Los mesopotámicos tenían intenso interés por la medicina[30] y las primeras prescripciones médicas aparecen en sumeria durante la Tercera Dinastía de Ur (c. 2112 a. C. - c. 2004 a. C.).[32] No obstante, los mesopotámicos parecen haber tenido poco interés en recopilar información sobre el mundo natural por el mero hecho de recopilar información[30] y principalmente solo estudiaron temas científicos que tenían aplicaciones prácticas obvias o relevancia inmediata para su sistema religioso.[30]
Antigüedad clásica
En la Antigüedad clásica, no existe un verdadero análogo antiguo de un científico moderno. En su lugar, individuos bien educados, generalmente de clase alta, y casi universalmente varones, realizaban diversas investigaciones sobre la naturaleza siempre que podían disponer de tiempo.[33] Antes de la invención o descubrimiento del concepto de "naturaleza" (griego antiguophysis) por parte de los filósofos presocráticos, las mismas palabras solían utilizarse para describir la forma natural en que crece una planta,[34] y la "manera" en que, por ejemplo, una tribu adora a un dios determinado. Por esta razón, se afirma que estos hombres fueron los primeros filósofos en sentido estricto, y también los primeros en distinguir claramente "naturaleza" y "convención"[35]: 209 La filosofía natural, precursora de la ciencia natural, se distinguía así como el conocimiento de la naturaleza y de las cosas que son verdaderas para toda comunidad, y el nombre de la búsqueda especializada de tal conocimiento era filosofía, el reino de los primeros filósofos-físicos. Eran principalmente especuladores o teóricos, particularmente interesados en la astronomía. En cambio, tratar de utilizar el conocimiento de la naturaleza para imitarla (artificio o tecnología, griego technē) era visto por los científicos clásicos como un interés más apropiado para los artesanos de clase social inferior.[36]
Un punto de inflexión en la historia de la ciencia filosófica primitiva fue el ejemplo de Sócrates de aplicar la filosofía al estudio de los asuntos humanos, incluyendo la naturaleza humana, la naturaleza de las comunidades políticas y el propio conocimiento humano. El método socrático, tal y como se documenta en los diálogos de Platón, es un método dialéctico de eliminación de hipótesis: se encuentran mejores hipótesis identificando y eliminando constantemente las que conducen a contradicciones. Se trata de una reacción al énfasis de los sofistas en la retórica. El método socrático busca verdades generales, comúnmente sostenidas, que dan forma a las creencias y las escudriña para determinar su consistencia con otras creencias.[45] Sócrates criticó el tipo de estudio más antiguo de la física por ser demasiado puramente especulativo y carente de autocrítica. Sócrates fue más tarde, en palabras de su Apología, acusado de corromper a la juventud de Atenas porque "no creía en los dioses en los que cree el Estado, sino en otros nuevos seres espirituales". Sócrates refutó estas afirmaciones,[46] pero fue condenado a muerte.[47]: 30e
Aristóteles creó posteriormente un programa sistemático de filosofía teleológica: El movimiento y el cambio se describen como la actualización de los potenciales que ya están en las cosas, según el tipo de cosas que sean. En su física, el Sol gira alrededor de la Tierra, y muchas cosas tienen como parte de su naturaleza que son para los humanos. Cada cosa tiene una causa formal, una causa final, y un papel en un orden cósmico con un impulsor inmóvil. Los socráticos también insistieron en que la filosofía debería utilizarse para considerar la cuestión práctica de la mejor manera de vivir para un ser humano (un estudio que Aristóteles dividió en ética y filosofía política). Aristóteles sostenía que el hombre conoce una cosa científicamente "cuando posee una convicción a la que ha llegado de una manera determinada, y cuando los primeros principios sobre los que descansa esa convicción le son conocidos con certeza".[48]
El astrónomo griego Aristarco de Samos (310-230 a. C.) fue el primero en proponer un modelo heliocéntrico del universo, con el Sol en el centro y todos los planetas orbitando alrededor de él.[49] El modelo de Aristarco fue ampliamente rechazado porque se creía que violaba las leyes de la física.[49] El inventor y matemático Archimedes de Siracusa hizo importantes contribuciones a los inicios del cálculo[50] y a veces se le ha atribuido como su inventor,[50] aunque su protocálculo carecía de varias características definitorias.[50]Plinio el Viejo fue un escritor y polímata romano, que escribió la enciclopedia seminal Historia Natural,[51][52][53] que se ocupan de la historia, la geografía, la medicina, la astronomía, las ciencias de la tierra, la botánica y la zoología.[51] Otros científicos o protocientíficos de la Antigüedad fueron Teofrasto, Euclides, Herófilo, Hiparco, Ptolomeo y Galeno.
A lo largo de los siglos, se han propuesto y utilizado varias clasificaciones distintas de las ciencias. Algunas incluyen un componente de jerarquía entre las ciencias que da lugar a una estructura de árbol, de ahí la noción de ramas de la ciencia. Hasta el Renacimiento, todo el saber que no fuera técnico o artístico se situaba en el ámbito de la filosofía. El conocimiento de la naturaleza era sobre la totalidad: una ciencia universal. Con la revolución científica se impuso la separación entre ciencia y filosofía, y surgieron las principales ciencias modernas,[54] entre ellas la física, química, astronomía, geología y biología.
En filosofía de la ciencia, la unidad de la ciencia es la idea de que todas las ciencias forman una integralidad o un todo unificado, que no puede ser separado o desmembrado a riesgo de perder la visión de conjunto.[55][56]
A pesar de esta afirmación, por ejemplo, es claro que física y sociología son dos disciplinas bien distintas y diferenciadas, y casi podríamos decir de una cualidad diferente, aunque la tesis de la unidad o unicidad de la ciencia afirmaría que, en principio, ambas deberían formar parte de un universo intelectual unificado de difícil o inconducente desmembramiento.
La tesis de la unidad de la ciencia[57] está usualmente asociada con una visión de diferentes niveles de organización en la naturaleza, donde la física es la más básica o fundamental, y donde la química es la que le sigue en jerarquía, y sobre esta última sigue la biología, y sobre la biología sigue la sociología. Según esta concepción, y partiendo desde la física, se reconocería así que las células, los organismos, y las culturas, tienen todos una base o un origen biológico, pero representando tres diferentes niveles jerárquicos de la organización biológica.[58]
A pesar de lo expresado, también se ha sugerido (por ejemplo por Jean Piaget, 1950),[59] que la unicidad de la ciencia podría ser considerada en términos de un círculo de ciencias o de disciplinas, donde la física provee la base para la química, y donde a su vez la química es la base para la biología, y la biología la base para la psicología, y esta la base para la lógica y la matemática, y a su vez la lógica y la matemática serviría de base y de comprensión para la física.
La tesis de la unidad de la ciencia[60] simplemente expresa que hay leyes científicas comunes aplicables a cualquier cosa y en cualquier nivel de organización. Pero en un determinado nivel de organización, los científicos llaman a esas leyes con nombres particulares, y visualizan la aplicación y expresión de esas leyes en ese nivel de una manera adaptada y simplificada, enfatizando por ejemplo la importancia de alguna de ellas sobre las otras. Es así como la termodinámica o las leyes de la energía, parecerían ser universales para cierto número de diferentes disciplinas, ya que por cierto, todos los sistemas en la naturaleza operan o parecen operar sobre la base de transacciones de energía. Claro, esto no excluye la posibilidad de algunas leyes particulares aplicables específicamente a dominios quizás caracterizados por una complejidad creciente, tal como lo sugerido por Gregg R. Henriques (2003, consultar 'Tree of Knowledge System'), quien precisamente propone cuatro grados de complejidad: Materia, Vida, Mente, y Cultura. Desde luego, este árbol igualmente podría ser circular, con la cultura enmarcando la comprensión y la percepción de la materia y de los sistemas por parte de la gente.
La ciencia es una creación humana, y forma parte de cultura humana. La ciencia es un todo unificado, en el sentido que es profundamente entendida cuando se la considera de una manera integral y holística, y no hay científicos que estudien realidades alternativas. Sin embargo, bien podría argumentarse que los científicos no actúan con un enfoque integral, pues por facilidad de análisis o por las razones que fueren, se hacen hipótesis simplificatorias, se aísla, se trata separadamente. Es posiblemente la percepción de una realidad sola, lo único que desemboca en la unidad de la ciencia.
Según la lógica proposicional, la ciencia parecería ser un camino hacia la simplificación, o en realidad hacia la universalización de teorías científicas discretas sobre la energía, y que los físicos llaman unificación. Esto ha conducido a la teoría de cuerdas y a sus concepciones derivadas, probablemente relacionadas con la noción que, en la base, sólo se encuentra la energía que no fue liberada en la Gran Explosión, y realmente nada más.
En filosofía de la ciencia, el problema de la demarcación es la cuestión de definir los límites que deben configurar el concepto «ciencia».[62] Las fronteras se suelen establecer entre lo que es conocimiento científico y no científico, entre ciencia y metafísica, entre ciencia y pseudociencia, y entre ciencia y religión. El planteamiento de este problema, conocido como problema generalizado de la demarcación, abarca estos casos. El problema generalizado, en último término, lo que intenta es encontrar criterios para poder decidir, entre dos teorías dadas, cuál de ellas es más «científica».
Tras más de un siglo de diálogo entre filósofos de la ciencia y científicos en diversos campos, y a pesar de un amplio consenso acerca de las bases generales del método científico,[63] los límites que demarcan lo que es ciencia, y lo que no lo es, continúan siendo debatidos.[64]
La investigación es el trabajo creativo y sistemático realizado para aumentar el acervo de conocimientos.[68] Implica la recopilación, organización y análisis de información para aumentar la comprensión de un tema o problema. Un proyecto de investigación puede ser una expansión del trabajo anterior en el campo. Para probar la validez de instrumentos, procedimientos o experimentos, la investigación puede reproducir elementos de proyectos anteriores o del proyecto en su conjunto.
El método científico abarca las prácticas aceptadas por la comunidad científica como válidas a la hora de exponer y confirmar sus teorías. Las reglas y principios del método científico buscan minimizar la influencia de la subjetividad del científico en su trabajo, reforzando así la validez de los resultados y, por ende, del conocimiento obtenido.
No todas las ciencias tienen los mismos requisitos. La experimentación, por ejemplo, no es posible en ciencias como la física teórica. El requisito de reproducibilidad y repetibilidad, fundamental en muchas ciencias, no se aplica a otras, como las ciencias humanas y sociales, donde los fenómenos no solo no se pueden repetir controlada y artificialmente (que es en lo que consiste un experimento), sino que son, por su esencia, irrepetibles, por ejemplo, la historia.
Así mismo, no existe un único modelo de método científico.[72] El científico puede usar métodos definitorios, clasificatorios, estadísticos, empírico-analíticos, hipotético-deductivos, procedimientos de medición, entre otros. Por esto, referirse a el método científico, es referirse a un conjunto de tácticas empleadas para construir conocimiento de forma válida. Estas tácticas pueden ser mejoradas, o reemplazadas por otras, en el futuro.[73] Cada ciencia, y aun cada tipo de investigación concreta, puede requerir un modelo propio de método científico.
Una ley científica es una proposición científica que afirma una relación constante entre dos o más variables o factores, cada uno de los cuales representa una propiedad o medición de sistemas concretos. También se define como regla y norma constantes e invariables de las cosas, surgida de su causa primera o de sus cualidades y condiciones. Por lo general se expresa matemáticamente o en lenguaje formalizado. Las leyes muy generales pueden tener una prueba indirecta verificando proposiciones particulares derivadas de ellas y que sean verificables. Los fenómenos inaccesibles reciben una prueba indirecta de su comportamiento a través del efecto que puedan producir sobre otros hechos que sí sean observables o experimentables.
En la arquitectura de la ciencia la formulación de una ley es un paso fundamental. Es la primera formulación científica como tal. En la ley se realiza el ideal de la descripción científica; se consolida el edificio entero del conocimiento científico: de la observación a la hipótesis teórica-formulación-observación-experimento (ley científica), teoría general, al sistema. El sistema de la ciencia es o tiende a ser, en su contenido más sólido, sistema de las leyes.[75]
Diferentes dimensiones que se contienen en el concepto de ley:[76]
La aprehensión meramente descriptiva
Análisis lógico-matemático
Intención ontológica
Desde un punto de vista descriptivo la ley se muestra simplemente como una relación fija, entre ciertos datos fenoménicos. En términos lógicos supone un tipo de proposición, como afirmación que vincula varios conceptos relativos a los fenómenos como verdad.[77] En cuanto a la consideración ontológica la ley como proposición ha sido interpretada históricamente como representación de la esencia, propiedades o accidentes de una sustancia. Hoy día se entiende que esta situación ontológica se centra en la fijación de las constantes del acontecer natural, en la aprehensión de las regularidades percibidas como fenómeno e incorporadas en una forma de «ver y explicar el mundo».[78]
El problema epistemológico consiste en la consideración de la ley como verdad y su formulación como lenguaje y en establecer su «conexión con lo real», donde hay que considerar dos aspectos:
El término de lo real hacia el cual intencionalmente se dirige o refiere la ley, es decir, la constancia de los fenómenos en su acontecer como objeto de conocimiento. Generalmente, y de forma vulgar, se suele interpretar como «relación causa/efecto» o «descripción de un fenómeno». Se formula lógicamente como una proposiciónhipotética en la forma: Si se da a, b, c.. en las condiciones, h, i, j... se producirá s, y, z...[79][80]
La forma y el procedimiento con que la ley se constituye, es decir, el problema de la inducción.
Una teoría científica se diferencia de un hecho científico o de una ley científica en que una teoría explica el "por qué" o "cómo". Un hecho es una observación simple y básica, mientras que una ley es una declaración (a menudo una ecuación matemática) sobre una relación entre hechos u otras leyes. Por ejemplo, la Ley de Gravedad de Newton es una ecuación matemática que puede usarse para predecir la atracción entre cuerpos, pero no es una teoría para explicar cómo funciona la gravedad.[83]
Los científicos elaboran distintas teorías partiendo de hipótesis que han sido corroboradas por el método científico, luego recolectan pruebas para poner a prueba dichas teorías. Las finalidades de las teorías son explicativas y predictivas. La fuerza de una teoría científica se relaciona con la cantidad de fenómenos que puede explicar, los cuales son medidos por la capacidad que tiene dicha teoría de hacer predicciones falsables respecto de dichos fenómenos que tiende a explicar.
Los científicos utilizan las teorías como fundamentos para obtener conocimiento científico, pero también para motivos técnicos, tecnológicos o médicos. La teoría científica es la forma más rigurosa, confiable y completa de conocimiento posible. Esto es significativamente distinto al uso coloquial de la palabra «teoría», que se refiere a algo sin sustento o una suposición.[84]
Aun cuando hay pocos acuerdos generales acerca del uso de modelos, La ciencia moderna ofrece una colección creciente de métodos, técnicas y teorías acerca de los diversos tipos de modelos. Las teorías o propuestas sobre la construcción, empleo y validación de modelos se encuentran en disciplinas tales como la metodología, filosofía de la ciencia, teoría general de los sistemas y en el campo relativamente nuevo de visualización científica. En la práctica, diferentes ramas o disciplinas científicas tienen sus propias ideas y normas acerca de tipos específicos de modelos. Sin embargo, y en general, todos siguen los principios del modelado.
Debe distinguirse entre un modelo científico y una teoría, aun cuando ambos se hallan muy estrechamente relacionados, pues el modelo para una teoría equivale a una interpretación de esta teoría. Una teoría dada puede tener diversos modelos para poder ser explicada.[88]
Para hacer un modelo es necesario plantear una serie de hipótesis, de manera que lo que se quiere estudiar esté suficientemente plasmado en la representación, aunque también se busca, normalmente, que sea lo bastante sencillo como para poder ser manipulado y estudiado.
Todo conocimiento de la realidad comienza con idealizaciones que consisten en abstraer y elaborar conceptos; es decir, construir un modelo acerca de la realidad. El proceso consiste en atribuir a lo percibido como real ciertas propiedades, que frecuentemente, no serán sensibles. Tal es el proceso de conceptualización y su traducción al lenguaje.
Eso es posible porque se suprimen ciertos detalles destacando otros que nos permiten establecer una forma de ver la realidad, aun sabiendo que no es exactamente la propia realidad. El proceso natural sigue lo que tradicionalmente se ha considerado bajo el concepto de analogía. Pero en la ciencia el contenido conceptual solo se considera preciso como modelo científico de lo real, cuando dicho modelo es interpretado como caso particular de un modelo teórico y se pueda concretar dicha analogía mediante observaciones o comprobaciones precisas y posibles.
El objeto modelo es cualquier representación esquemática de un objeto. Si el objeto representado es un objeto concreto entonces el modelo es una idealización del objeto, que puede ser pictórica (por ejemplo, un dibujo) o conceptual (una fórmula matemática); es decir, puede ser figurativa o simbólica. La informática ofrece herramientas para la elaboración de objetos-modelo a base del cálculo numérico.
La representación de una cadena polimérica con un collar de cuentas de colores es un modelo análogo o físico; un sociograma despliega los datos de algunas de las relaciones que pueden existir entre un grupo de individuos. En ambos casos, para que el modelo sea modelo teórico debe estar enmarcado en una estructura teórica. El objeto modelo así considerado deviene, en determinadas circunstancias y condiciones, en modelo teórico.
Un modelo teórico es un sistema hipotético-deductivo concerniente a un objeto modelo que es, a su vez, representación conceptual esquemática de una cosa o de una situación real o supuesta real.[89] El modelo teórico siempre será menos complejo que la realidad que intenta representar, pero más rico que el objeto modelo, que es solo una lista de rasgos del objeto modelizado. Bunge esquematiza estas relaciones de la siguiente forma:[90]
Cualquier objeto modelo puede asociarse, dentro de ciertos márgenes, a teorías generales para producir diversos modelos teóricos. Un se gas puede considerar como un «enjambre de partículas enlazadas por fuerzas de Van der Waals», pero se puede insertar tanto en el marco teórico de la teoría clásica como en el de la teoría relativista cuántica de partículas, produciendo diferentes modelos teóricos en cada caso.
En ocasiones, las instituciones científicas emiten declaraciones con las que tratan de comunicar al "exterior" una síntesis del estado de la ciencia desde el "interior". El debate mediático o político sobre temas que son controvertidos dentro de la esfera pública pero no necesariamente para la comunidad científica puede invocar un consenso científico, como por ejemplo el tema de la evolución biológica[94][95] o el cambio climático.[96]
El conocimiento científico adquiere el carácter de objetividad por medio de la comunidad y sus instituciones, con independencia de los individuos. D. Bloor, siguiendo a Popper y su teoría del mundo 3, convierte simétricamente el reino de lo social en un reino sin súbditos individuales, en particular reduce el ámbito del conocimiento al estado del conocimiento en un momento dado, esto es, a las creencias aceptadas por la comunidad relevante, con independencia de los individuos en concreto. El conocimiento científico es únicamente adscrito a la «comunidad científica».
Pero esto no debe llevar a pensar que el conocimiento científico es independiente de un individuo concreto como algo autónomo. Lo que ocurre es que se encuentra «socialmente fijado» en documentos y publicaciones y está causalmente relacionado con los conocimientos de los individuos concretos que forman parte de la comunidad.[97]
Nuestro concepto de progreso científico está detrás de la idea de que la ciencia como disciplina incrementa cada vez más su capacidad para resolver problemas, a través de la aplicación de cuidadas y particulares metodologías que genéricamente englobamos con la denominación de método científico. Sin embargo, es posible que la ciencia no progrese indefinidamente, sino que llegue el fin de la ciencia.
La filosofía de la ciencia es la rama de la filosofía que investiga el conocimiento científico y la práctica científica, se ocupa de examinar y describir la estructura de la ciencia y de los métodos que siguen los científicos para trabajar en ella. Se trata de una disciplina que reflexiona sobre los fundamentos, métodos, límites y alcances de la ciencia, podría decir que busca responder a la pregunta cómo se hace la ciencia.[98][99] Se trata de una disciplina que reflexiona sobre los fundamentos, métodos, límites y alcances de la ciencia.[100] Lo que intenta la filosofía de la ciencia es explicar problemas tales como:
Tipos de razonamiento utilizados para llegar a conclusiones
Implicaciones de los diferentes métodos y modelos de ciencia
La filosofía de la ciencia comparte algunos problemas con la gnoseología —la teoría del conocimiento— que se ocupa de los límites y condiciones de posibilidad de todo conocimiento. Pero, a diferencia de esta, la filosofía de la ciencia restringe su campo de investigación a los problemas que plantea el conocimiento científico; el cual, tradicionalmente, se distingue de otros tipos de conocimiento, como el ético o estético, o las tradicionesculturales.
A lo largo de la historia, se han propuesto diversos esquemas para el método científico. No hay un único método científico, algunos de los más importantes son:
Método inductivo-deductivo: La ciencia comienza con observaciones individuales, a partir de las cuales se formulan generalizaciones que van más allá de los hechos observados. Estas generalizaciones permiten hacer predicciones, cuya confirmación las fortalece. Aristóteles, Francis Bacon, Galileo, Newton, y muchos otros científicos y filósofos se adhieren a este esquema.
Método hipotético-deductivo: Se parte de hipótesis o conjeturas que preceden y guían a las observaciones. La ciencia no se inicia con la experiencia del mundo, sino con ideas propuestas por el investigador. Hume, Whewell, Kant, Popper, y otros se inclinan hacia este método.
Método a priori: El conocimiento se alcanza mediante la razón pura, sin necesidad de recurrir a la experiencia. Descartes es un exponente de este método.
Anarquismo metodológico: No existe un método científico único y universal. Los científicos utilizan una variedad de métodos y estrategias, y no hay reglas fijas que garanticen el éxito de la investigación. Feyerabend es el principal defensor de esta postura.
En la actualidad, muchos científicos consideran que no existe un único método científico, debido a la complejidad y diversidad de las ciencias.[100][102]
Miembros de la misma comunidad no necesitan trabajar en conjunto. La comunicación entre miembros es establecida por la diseminación de trabajos de investigación e hipótesis a través de artículos en revistas científicas que son revisadas por pares, o asistiendo a conferencias donde nuevas investigaciones son presentadas o ideas intercambiadas y debatidas.
Un científico (del latín scientificus,[103] y a su vez de scientia, 'conocimiento' y -fic, raíz apofónica de facis, 'hacer') es una persona que participa y realiza una actividad sistemática para generar[104] nuevos conocimientos en el campo de las ciencias (tanto naturales como sociales), es decir, que realiza investigación científica.[105][106][107] El término fue acuñado por el británico William Whewell en 1833.[108][109][110][111][112][113]
En un sentido más restringido, un científico es una persona que utiliza el método científico.[114][115] Puede ser experta en una o más áreas de la ciencia.[116]
Las mujeres han contribuido notablemente a la ciencia desde sus inicios. El estudio histórico, crítico y sociológico de este hecho se ha convertido en una disciplina académica en sí misma.
En varias antiguas civilizaciones occidentales hubo mujeres dedicadas a la medicina, y el estudio de la filosofía natural estaba abierto a las mujeres en la Antigua Grecia. Las mujeres también hicieron aportaciones a la protociencia de la alquimia en el siglo I y II d. C. En la Edad Media, los conventos cumplían una importante función para la educación femenina y algunas de estas instituciones les brindaron a las mujeres la oportunidad de participar en la investigación académica. Pero cuando, en el siglo XI, se fundaron las primeras universidades, las mujeres quedaron en su mayor parte excluidas de ellas.[117] Fuera del mundo académico, fue la botánica la ciencia que más se benefició de las aportaciones femeninas al inicio de la Edad Moderna. En Italia parece haber reinado una actitud más abierta que en otros lugares hacia los estudios de medicina por parte de mujeres.[117] La primera mujer de la que se sabe que obtuvo una cátedra en una disciplina científica fue Laura Bassi en la Italia del siglo XVIII.
Aunque los roles de género estaban muy definidos en el siglo XVIII, las mujeres avanzaron de forma visible en lo que respecta a la ciencia. Si bien hasta el siglo XIX se les siguió negando a muchas una educación científica formal, empezaron a ser admitidas en sociedades educativas de menor nivel. En el siglo XX se produjo un gran cambio; el número de mujeres que estudiaban en universidades aumentó sensiblemente, y comenzaron a ofrecerse trabajos remunerados a las que se quisiesen dedicar a la ciencia. Marie Curie, la primera mujer en ser galardonada con un Premio Nobel de Física en 1903, fue también la primera y hasta ahora única persona en obtener dos premios en dos disciplinas científicas, al recoger en 1911 el de química, en ambos casos por su trabajo sobre la radiactividad. 53 mujeres en total han recibido un Premio Nobel entre 1901 y 2019.[118]
Una sociedad científica es una asociación de profesionales, investigadores, especialistas o eruditos de una rama del conocimiento o de las ciencias en general, que les permite reunirse, exponer los resultados de sus investigaciones, confrontarlos con los de sus colegas o especialistas de los mismos dominios del conocimiento, y difundir sus trabajos a través de publicaciones especializadas.[119] La membresía puede estar abierta a todos, puede requerir la posesión de alguna calificación o puede ser un honor conferido por elección.[120]
La mayoría de las sociedades científicas son organizaciones sin ánimos de lucro, y muchas son asociaciones profesionales. Sus actividades suelen incluir la celebración de conferencias periódicas para la presentación y discusión de nuevos resultados de investigación y la publicación o patrocinio de revistas académicas en su disciplina. Algunos también actúan como organismos profesionales, regulando las actividades de sus miembros en el interés público o el interés colectivo de los miembros.
La divulgación científica es el conjunto de actividades que interpretan y hacen accesible el conocimiento científico a la sociedad, es decir, todas aquellas labores que llevan a cabo el conocimiento científico a las personas interesadas en entender o informarse sobre ese tipo de conocimiento. La divulgación pone su interés no solo en los descubrimientos científicos del momento (por ejemplo, la determinación de la masa del neutrino), sino también en teorías más o menos bien establecidas o aceptadas socialmente (por ejemplo, la teoría de la evolución) o incluso en campos enteros del conocimiento científico.[121]
Mientras que el periodismo científico se centra en desarrollos científicos recientes, la divulgación científica es más amplia, más general.
La conciencia pública de la ciencia, comprensión pública de la ciencia, o más recientemente, compromiso público con la ciencia y la tecnología, son términos relacionados con las actitudes, comportamientos, opiniones y actividades que comprenden las relaciones entre el público o la sociedad lega en su conjunto, el conocimiento científico y su organización. Es un enfoque relativamente nuevo para la tarea de explorar la multitud de relaciones y vínculos que la ciencia, la tecnología y la innovación tienen entre el público en general.[122] Si bien el trabajo anterior en la disciplina se había centrado en aumentar el conocimiento público de los temas científicos, en línea con el modelo de déficit de información de la comunicación científica, el descrédito de este modelo ha llevado a un mayor énfasis en cómo el público elige usar el conocimiento científico y en el desarrollo de interfaces para mediar entre la comprensión experta y lega de un problema.
Los estudios sociales sobre ciencia y tecnología abarcan un campo interdisciplinario de estudios sobre los efectos culturales, éticos y políticos del conocimiento científico y la innovación tecnológica.[123] Colocan el énfasis en la interpretación sobre las utilidades, apropiaciones e impactos en la vida cotidiana de las personas, con el objetivo de romper las antiguas barreras de investigación científico-técnica.
En las regiones de habla hispana, este tipo de inquietudes y de reflexiones han llegado con el nombre común de estudios de/sobre Ciencia, Tecnología, y Sociedad (abreviado CTS), lo que en las regiones de habla inglesa se conoce como Science and Technology Studies (Estudios de Ciencia y Tecnología) o Science, Technology and Society (Ciencia, Tecnología y Sociedad), ambas con el acrónimo STS. En las regiones de lengua hispana, la multidisciplinariedad en CTS incluye desde el principio los ámbitos de la sociología, la filosofía, la historia y la antropología, así como incorpora desde sus orígenes en los movimientos en defensa de los derechos humanos, el movimiento feminista, las corrientes medioambientalistas, pacifistas y los primeros grupos de LGBT surgidos sobre todo tras la guerra del Vietnam. Por sus orígenes y naturaleza vemos cierto paralelismo entre este campo y otros tipos de estudios culturales.[124][125]
↑ abLindberg, David C. (2007). «Science before the Greeks». The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second edición). Chicago, Illinois: University of Chicago Press. pp. 1–20. ISBN978-0-226-48205-7.
↑ abGrant, Edward (2007). «Ancient Egypt to Plato». A History of Natural Philosophy: From the Ancient World to the Nineteenth Century (First edición). New York, New York: Cambridge University Press. pp. 1–26. ISBN978-052-1-68957-1.
↑ abLindberg, David C. (2007). «The revival of learning in the West». The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second edición). Chicago, Illinois: University of Chicago Press. pp. 193–224. ISBN978-0-226-48205-7.
↑Lindberg, David C. (2007). «Islamic science». The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second edición). Chicago, Illinois: University of Chicago Press. pp. 163–92. ISBN978-0-226-48205-7.
↑Principe, Lawrence M. (2011). «Introduction». Scientific Revolution: A Very Short Introduction (First edición). New York, New York: Oxford University Press. pp. 1-3. ISBN978-0-199-56741-6.
↑Lindberg, David C. (1990). «Conceptions of the Scientific Revolution from Baker to Butterfield: A preliminary sketch». En Lindberg, David C.; Westman, Robert S., eds. Reappraisals of the Scientific Revolution (First edición). Chicago, Illinois: Cambridge University Press. pp. 1-26. ISBN978-0-521-34262-9.
↑ abLindberg, David C. (2007). «The legacy of ancient and medieval science». The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (2nd edición). Chicago, Illinois: University of Chicago Press. pp. 357–368. ISBN978-0-226-48205-7.
↑Del Soldato, Eva (2016). Zalta, Edward N., ed. The Stanford Encyclopedia of Philosophy (Fall 2016 edición). Metaphysics Research Lab, Stanford University. Archivado desde el original el 11 de diciembre de 2019. Consultado el 1 de junio de 2018.
↑Gal, Ofer (2021). «The New Science». The Origins of Modern Science. New York, New York: Cambridge University Press. pp. 308-349. ISBN978-1316649701.
↑Bowler, Peter J.; Morus, Iwan Rhys (2020). «The scientific revolution». Making Modern Science: A Historical Survey (2nd edición). Chicago, Illinois: University of Chicago Press. pp. 25-57. ISBN978-0226365763.
↑Bowler, Peter J.; Morus, Iwan Rhys (2020). «The conservation of energy». Making Modern Science: A Historical Survey (2nd edición). Chicago, Illinois: University of Chicago Press. pp. 83-107. ISBN978-0226365763.
↑Bowler, Peter J.; Morus, Iwan Rhys (2020). «The age of the earth». Making Modern Science: A Historical Survey (2nd edición). Chicago, Illinois: University of Chicago Press. pp. 108-133. ISBN978-0226365763.
↑Bowler, Peter J.; Morus, Iwan Rhys (2020). «The Darwinian revolution». Making Modern Science: A Historical Survey (2nd edición). Chicago, Illinois: University of Chicago Press. pp. 134-171. ISBN978-0226365763.
↑Cahan, David, ed. (2003). From Natural Philosophy to the Sciences: Writing the History of Nineteenth-Century Science. Chicago, Illinois: University of Chicago Press. ISBN978-0-226-08928-7.
↑The Oxford English Dictionary dates the origin of the word "scientist" to 1834.
↑Lightman, Bernard (2011). «13. Science and the Public». En Shank, Michael; Numbers, Ronald; Harrison, Peter, eds. Wrestling with Nature : From Omens to Science. Chicago: University of Chicago Press. p. 367. ISBN978-0-226-31783-0.
↑ abBowler, Peter J.; Morus, Iwan Rhys (2020). «Genetics». Making Modern Science: A Historical Survey (2nd edición). Chicago, Illinois: University of Chicago Press. pp. 197-221. ISBN978-0226365763.
↑ abBowler, Peter J.; Morus, Iwan Rhys (2020). «Twentieth-century physics». Making Modern Science: A Historical Survey (2nd edición). Chicago, Illinois: University of Chicago Press. pp. 262-285. ISBN978-0226365763.
↑Bowler, Peter J.; Morus, Iwan Rhys (2020). «Introduction: Science, society, and history». Making Modern Science: A Historical Survey (2nd edición). Chicago, Illinois: University of Chicago Press. pp. 1-24. ISBN978-0226365763.
↑ abcd"The historian ... requires a very broad definition of "science" – one that ... will help us to understand the modern scientific enterprise. We need to be broad and inclusive, rather than narrow and exclusive ... and we should expect that the farther back we go [in time] the broader we will need to be." p.3—Lindberg, David C. (2007). «Science before the Greeks». The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second edición). Chicago, Illinois: University of Chicago Press. pp. 1–27. ISBN978-0-226-48205-7.
↑Rochberg, Francesca (2011). «Ch.1 Natural Knowledge in Ancient Mesopotamia». En Shank, Michael; Numbers, Ronald; Harrison, Peter, eds. Wrestling with Nature : From Omens to Science. Chicago: University of Chicago Press. p. 9. ISBN978-0-226-31783-0.
↑R D. Biggs (2005). «Medicina, cirugía y salud pública en la antigua Mesopotamia». Journal of Assyrian Academic Studies19 (1): 7-18.
↑Lehoux, Daryn (2011). «2. El conocimiento natural en el mundo clásico». En University of Chicago Press, Michael; Numbers, Ronald; Harrison, Peter, eds. Wrestling with Nature : De los presagios a la ciencia. Chicago. p. 39. ISBN978-0-226-31783-0.
↑"Progreso o retorno" en Una introducción a la filosofía política: Diez ensayos de Leo Strauss (Versión ampliada de Political Philosophy: Seis ensayos de Leo Strauss, 1975). Ed. Hilail Gilden. Detroit: Wayne State UP, 1989.
↑Cropsey; Strauss (eds.). History of Political Philosophy (3rd edición). p. 209.
↑«Platón, Apología, sección 30». Perseus Digital Library. Tufts University. 1966. Archivado desde el original el 14 de julio de 2021. Consultado el 1 de noviembre de 2016.
↑Aristóteles. Ética Nicomaquea (H. Rackham edición). Archivado desde el original el 17 de marzo de 2012. Consultado el 22 de septiembre de 2010. 1139b
↑María Aurelia Lazo Pérez , La interdisciplinariedad y la integralidad, una necesidad de los profesionales de la educación, Cuadernos de Educación y Desarrollo, vol 3 nº 27 (mayo 2011), cita cf. 'Acercamiento teórico al enfoque interdisciplinario de las ciencias: Líneas directrices' : La autora después de reflexionar plantea que la interdisciplinariedad es mucho más que un intercambio de experiencias, conocimientos y procesos, la misma constituye una necesidad social, científica e intelectual, la constante fragmentación de las ciencias y de su estudio, llamado pensamiento disciplinar, o la compartimentación en las disciplinas, no posibilita el estudio de los objetos en su conjunto, lo que conlleva es a una estrechez mental no acorde con la necesidad que se tiene de dar soluciones integradoras a los problemas que surgen en un mundo que se inclina con mayor fuerza a la globalización.
↑Brisa Varela, Lila Ferro, Las ciencias sociales en el nivel inicial: Andamios para futuros/as ciudadanos/as, Ediciones Colihue, Buenos Aires (2007), ISBN 978-950-581-707-8, Cita pág. 40: Piaget expuso sistemáticamente su postura frente a la interdisciplinariedad. Él consideraba que el surgimiento de ésta obedecía a que el conjunto de los conocimientos constituía una totalidad y, por la evolución interna de la ciencia, había llegado el momento donde se evidenciaba su unidad última; el concepto de estructura era la prueba de esa unidad. Las estructuras subyacentes a todas las ciencias serían, según Piaget, las mismas. Por eso sostenía que la realidad era isomórfica, y por lo tanto el monismo metodológico debía plantearse, ya que no existía discontinuidad entre las ciencias naturales y las sociales..
↑Karl Popper, La lógica de la investigación científica «Llamo problema de la demarcación al de encontrar un criterio que nos permita distinguir entre las ciencias empíricas, por un lado, y los sistemas metafísicos por otro.»
↑Gauch, Hugh G., Jr., Scientific Method in Practice (2003) 3-7.
↑Cover, J.A., Curd, Martin (Eds, 1998) Philosophy of Science: The Central Issues, 1-82.
↑Lakatos, Imre; Gregory, Currie (1983). La metodología de los programas de investigación científica. Madrid: Alianza. p. 9. ISBN8420623490. OCLC318332464. Consultado el 26 de febrero de 2019. «¿Qué distingue al conocimiento de la superstición, la ideología o la pseudo-ciencia? La Iglesia Católica excomulgó a los copernicanos, el Partido Comunista persiguió a los mendelianos por entender que sus doctrinas eran pseudocientíficas. La demarcación entre ciencia y pseudociencia no es un mero problema de filosofía de salón; tiene una importancia social y política vital.»
↑A. Giusti, Miguel (2000). Miguel Guisti, ed. La filosofía del siglo XX: balance y perspectivas (primera edición edición). Fondo Editorial de la Pontificia Universidad Católica del Perú. pp. 832 páginas. ISBN9972-42-354-9. Consultado el 15 de enero de 2012. «El Partido Comunista de la URSS declaró (1949) pseudocientífica a la genética mendeliana -por "burguesa y reaccionaria"- y mandó a sus defensores como Vavílov a morir en campos de concentración».
↑Georges Chapouthier, Le métier de chercheur: itinéraire d'un biologiste du comportement, Les cahiers rationalistes, 1998, n° 461, págs. 3-9.
↑«scientific method». Oxford Dictionaries(en inglés). Archivado desde el original el 21 de marzo de 2019. Consultado el 10 de marzo de 2019. «A method of procedure that has characterized natural science since the 17th century, consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses.»
↑"Rules for the study of natural philosophy", Newton 1999, pp 794-6, libro 3, The System of the World
↑París, Carlos (1952). Física y filosofía: El problema de la relación entre ciencia física y filosofía de la naturaleza. Consejo Superior de Investigaciones Científicas. Universidad de Madrid. p. 85.
↑París, Carlos (1992). Ciencia, tecnología y transformación social. Universitat de Valencia. p. 109. ISBN84-370-0966-9.
↑Matemáticamente la aplicación de un procedimiento mensurativo cuantifica dichos datos y convierte en variables los conceptos por ellos referenciados, mientras que su relación adquiere la estructura de una función matemática. Los empiristas lógicos pensaron que la estructura afirmativa de las leyes solamente son esquemas meramente formales de funciones proposicionales que adquieren la forma de argumento al sustituir las variables por los contenidos conceptuales de la observación previamente medida. Eso hizo posible la pretensión de construcción de "el lenguaje Universal de la Ciencia" como "Proyecto Unificado".
↑Russell, Bertrand (1982). La evolución de mi pensamiento filosófico. Madrid: Alianza. pp. 163 y ss. 84-206-1605-2.
↑Russell, Bertrand (1982). La evolución de mi pensamiento filosófico. Madrid: Alianza. pp. 169 y ss. 84-206-1605-2.
↑El hecho de la flotación de un cuerpo en un fluido, se formularía: Si un cuerpo a se encuentra sumergido en un fluido, condición h, experimentará un empuje vertical hacia arriba igual al peso del volumen de fluido que desaloja. Lo que equivale a la explicacióncausal de que: Un cuerpo flota en el agua porque el peso del volumen del agua que desaloja, (el volumen que ocupa el cuerpo sumergido), es mayor que el peso de todo el cuerpo (explicación esencial); o «descripción del fenómeno» de cómo sucede la flotación de un cuerpo.
↑Winther, Rasmus Grønfeldt (2021). Zalta, Edward N., ed. The Structure of Scientific Theories (Spring 2021 edición). Metaphysics Research Lab, Stanford University. Consultado el 2 de febrero de 2024.
↑Bradford, Alina (31 de enero de 2022). «What Is a Scientific Theory?». livescience.com(en inglés). Consultado el 2 de febrero de 2024.
↑Hacking, Ian. 1983. Representing and Intervening. Introductory Topics in the Philosophy of Natural Science. Cambridge University Press
↑von Neumann, John. «Method in the Physical Sciences». En Bródy F., Vámos, ed. The Neumann Compendium (World Scientific): 628. «[...] las ciencias no tratan de explicar, apenas tratan de interpretar, principalmente hacen modelos. Por un modelo se entiende una construcción matemática que, con el agregado de ciertas interpretaciones verbales, describe el fenómeno observado. La justificación de esta construcción matemática es única y precisamente que se espera que funcione —ésto es, que describa correctamente los fenómenos de un área razonablemente grande.»
↑Bailer-Jones, Daniela. (2009). Scientific models in philosophy of science. University of Pittsburgh Press.pp. 64-76 ISBN978-0-8229-7123-8. OCLC 794702160. Consultado el 2019-12-07 “Un modelo puede mostrar partes distintas en su origen desde una cierta analogía, teoría o hipótesis, pero como modelo se juzga respecto al fenómeno del cual es modelado. ¿El modelo es una buena descripción?, ¿Representa fielmente el fenómeno?”.
↑Bunge, Mario (1975). Teoría y realidad. Barcelona: Ariel. p. 19. ISBN84-344-0725-6. «Los mecanismos hipotéticos deberán tomarse e serio, como representando las entrañas de la cosa, y se deberá dar prueba de esta convicción realista (pero al mismo tiempo falible) imaginando experiencias que puedan poner en evidencia la realidad de los mecanismos imaginados. En otro caso se hará literatura fantástica o bien se practicará la estrategia convencionalista, pero en modo alguno se participará en la búsqueda de la verdad.»
↑Bunge, Mario. (1973). Method, Model and Matter. Springer Netherlands. pp. 111. ISBN978-94-010-2519-5. OCLC 851392088. Consultado el 2019-12-07.
"Cualquier modelo teórico de un objeto concreto está por debajo de la complejidad de donde se origina, pero en cualquier caso es mucho más rico que el propio objeto modelo, que es solo una lista de rasgos del objeto concreto. Por lo tanto, si un planeta se modela como un punto de masa, o incluso como una bola, no se concreta mucho. Es solo asumiendo que dicho modelo satisface los requisitos establecidos por leyes, en particular leyes de movimiento, que obtenemos algunas piezas del conocimiento científico. Mira algunos ejemplos más:"
↑Bustos, E. (2009-2013). «Objetividad». En Villoro, L., ed. El conocimiento. Enciclopedia Iberoamericana de Filosofía20. Trotta. p. 89 y ss. ISBN 978-84-87699-48-1 (obra completa) ISBN 84-8164-358-0 (edición impresa) ISBN 978-84-9879-402-1 (edición digital).
↑ abJoseph Bentley. (2024). Positivist or post-positivist philosophy of science? The left Vienna Circle and Thomas Kuhn, Studies in History and Philosophy of Science [Review of Positivist or post-positivist philosophy of science? The left Vienna Circle and Thomas Kuhn, Studies in History and Philosophy of Science]. Volume 107(ISSN 0039-3681). https://doi.org/10.1016/j.shpsa.2024.08.003.
↑Bunge, M. (2014). La ciencia, su método y su filosofía. SUDAMERICANA.
↑Pérez, R., Ediciones, T., & De Selección, C. (2004). ¿EXISTE EL MÉTODO CIENTÍFICO? Historia y realidad
↑Varios autores (1910-1911). «Whewell, William». En Chisholm, Hugh, ed. Encyclopædia Britannica. A Dictionary of Arts, Sciences, Literature, and General information(en inglés) (11.ª edición). Encyclopædia Britannica, Inc.; actualmente en dominio público.
↑Cahan, David, ed. (2003). From Natural Philosophy to the Sciences: Writing the History of Nineteenth-Century Science. Chicago, Illinois: University of Chicago Press. ISBN0-226-08928-2.
↑Lightman, Bernard (2011). «Science and the Public». En Shank, Michael; Numbers, Ronald; Harrison, Peter, eds. Wrestling with Nature : From Omens to Science. Chicago: University of Chicago Press. p. 367. ISBN978-0226317830.
↑Snyder, Laura J. (2019). Zalta, Edward N., ed. The Stanford Encyclopedia of Philosophy (Spring 2019 edición). Metaphysics Research Lab, Stanford University. Consultado el 8 de diciembre de 2020.
↑Savaget, Paulo; Acero, Liliana (2017). «Plurality in understandings of innovation, sociotechnical progress and sustainable development: An analysis of OECD expert narratives». Public Understanding of Science. doi:10.1177/0963662517695056.
Bunge, Mario (1969). La ciencia: su método y su filosofía. Buenos Aires.
— (1980). Epistemología: curso de actualización. Barcelona. Ariel. ISBN84-344-8004-2.
— (1981). Materialismo y ciencia. Barcelona. Ariel. ISBN84-344-0828-7.
Cassirer, Ernst (1979). El problema del conocimiento en la filosofía y en la ciencia modernas. México: Fondo de Cultura Económica.
Feyerabend, Paul. «Cómo ser un buen empirista: defensa de la tolerancia en cuestiones epistemológicas». Revista Teorema 7 (Valencia: Universidad de Valencia). ISBN84-600-0507-0.
— (1975). Contra el método: esquema de una teoría anarquista del conocimiento. Barcelona: Ariel. ISBN84-344-0735-3.
— (1990). Diálogo sobre el método. Madrid: Cátedra. ISBN84-376-0956-9.
Fried Schnitman, D.; Prigogine, I.; Morin, E.; et. al. (1994). Nuevos paradigmas, Cultura y Subjetividad. Buenos Aires: Paidós. ISBN950-12-7023-8.
Hurtado, G. (Abril de 2003). «¿Saber sin verdad? Objeciones a un argumento de Villoro». Crítica. Revista Hispanoamericana de Filosofía35 (103): 121-134.
— (1994). Las mil caras del realismo. Barcelona: Paidós. ISBN84-7509-980-7.
— (1985). W. K. Essler, H. Putnam y W. Stegmüller, ed. Epistemology, methodology, and philosophy of science: essays in honor of Carl G. Hempel on the occasion of his 80th birthday.