Ĉi tiu artikolo bezonas poluradon, ĉar ĝi montras stilajn kaj/aŭ gramatikajn kaj/aŭ strukturajn problemojn, kiuj ne konformas al stilogvido.
La priskribo de la problemo troviĝas ĉi tie. Bonvolu ŝanĝi la enhavon por plibonigi la artikolon.
kie u estas funkcio de x kaj y. Ĉi tiu rialto implicas, ke la valoroj de u(x, y) estas tute nedependaj de x. Tial la ĝenerala solvaĵo de ĉi tiu diferenciala ekvacio estas:
kie c estas ajna valoro konstanto (nedependa de x).
Tiuj du ekzemploj ilustras, ke la ĝeneralaj solvaĵoj de ordinaraj diferencialaj ekvacioj (ODE) implicas ajnajn konstantojn, sed la solvoj de partaj diferencialaj ekvacioj (PDE) implicas ajnajn funkciojn. Solvaĵo de parta diferenciala ekvacio estas ĝenerale ne unika; alimaniere oni devos havigi pliajn limkondiĉojn, por difini la solvon unike. Ekzemple, en la simpla kazo supre, la funkcio povas esti determinita, se estas specifita laŭ la linio .
Skribmaniero kaj ekzemploj
En partaj diferencialaj ekvacioj estas tre komune simboligi partajn derivaĵojn uzante sub-indeksoj (skribmaniero de tensoroj). Tio estas:
Ajna parta diferenciala ekvacio de unua ordo havas solvo dependan de ajna funkcio, kutime nomitan ĝenerala solvo de la PDE. En multaj fizikaj aplikoj ĉi tiu solvo estas ĝenerale malpli grava ol kompleta solvo, kiu povas ofte esti akirita per la metodo de apartigo de variabloj.
Kompleta solvo estas aparta solvaĵo de la PDE, kiu enhavas multajn nedependajn laŭvolajn konstantojn kiel nedependajn variablojn implicitajn en la ekvacio. Ekzemple, la integrado de la ekvacioj de moviĝo de mekaniĥa sistemo uzanta la metodon bazitan sur la Hamilton-Jakobia ekvacio (PDE kun la tempa variablo) postulas kompletan integralon, dum la ĝenerala solvo estas malpli interesa laŭ vidpunkto de fiziko.
Ekzisto kaj unikeco
Kvankam la temo de la ekzisto kaj unikeco de solvaĵoj de ordinaraj diferencialaj ekvacioj (ODE) estas tre kontentige resumita per la teoremo de Picard-Lindelöf, la sama kazo por partaj diferencialaj ekvacioj (PDE) estas for de esti kontentige solvita. Kvankam estas ĝenerala teoremo, la teoremo de Koŝio-Kovalevskaja, kiu asertas, ke, por PDE kiu estas analitika pri la nekonata funkcio kaj ties derivaĵoj havas unikan analitikan solvaĵon. Kvankam ĉi tiu rezulto ŝajnas establi ekziston kaj unikecon de solvaĵoj, estas ekzemploj de la unua ordo PDE, kies koeficientoj havas derivaĵojn de ajna ordo (kvankam sen esti analitikaj), kiuj tamen ne havas solvon. Eĉ se solvo ekzistas kaj PDE estas unika, ĝi povas havi nedezirindajn ecojn.
Ekzemplo estas la malnormala konduto de la vico de problemoj de Koŝio ( dependa de parametro n), kiu sekvas la laplacan ekvacion:
kun limkondiĉoj
kie n estas entjero. La derivaĵo de u rilatante al y konverĝas al 0 unuforme en x kiam n pliiĝas, sed la solvo estas:
Tiu solvo proksimiĝas al malfinio (pro propreco de hiperbola sinuso), se nx ne estas entjera oblo de π por iu ajn ne nula valoro de y. La problemo de Koŝio pri la laplaca ekvacio nomiĝas malsana aŭ malbone difinita, ĉar la solvo ne dependas kontinue de datumoj de la problemo. Ĉi tiuj "malsanaj" problemoj kutime ne kontentigas pri aplikoj en fiziko.
Klasifiko de PDE-j de dua ordo
La PDE_j de dua ordo kutime klasifikiĝas laŭ kvar tipoj de PDE, kiuj estas de ĉefa intereso, jenaj estas ekzemploj de tiaj kvar tipoj:
kie la koeficientoj A, B, C, D, E dependas nur de x kaj y. Se en regiono de la X-Y ebeno, la PDE estas ia de dua ordo en tiu regiono. La kialo de la elektitaj terminoj originas pro tio, ke la formo de la ekvacio estas analoga je tia de la ekvacio de konikoj:
PDE-j de pli alta ordo
Dum PDE-j de dua ordo aplikiĝas al grandega kvanto da fizikaj fenomenoj, alia pli malgranda kvanto da fizikaj procezoj havas solvojn en PDE-j de pli alta ordo, jenaj ekzemploj estas: