Kromnomo de lia patro estis Bonacci (bonnatura homo) kaj li mem Fibonacci (devenas de filius Bonacci , t.e. filo de bonnatura homo). La patro gvidis komercan oficejon en Nord-Afriko kaj Leonardo juna multe vojaĝis kun li. Ĉi tie, de araboj li ekkonis hindan cifersistemon.[1]
Fibonacci mem konvinkiĝis pri la supereco de t.n. arabaj ciferoj kaj vojaĝis tra la mediteraneaj landoj por studi ĉe konataj arabaj matematikistoj de sia tempo. En 1202, estante 27-jara li publikis Liber Abaci, t.e. libro de abako. Li klarigis araban pozician sistemon de la nombroj, kiu inkluzivis ankaŭ la nombron nul. Ĉi tiu libro montris praktikan oportunon de nova nombrosistemo aplikante ĝin en komerca librotenado, por konversio de pezoj kaj mezuroj, kalkulado de procentoj, monŝanĝo k.a.. La libro estis entuziasme akceptita de edukita Eŭropo kaj havis profundan efikon al eŭropa penso. Ĉi tiu eleganta sistemo de nombrosignado baldaŭ anstataŭis la ne tre oportunan romian sistemon de ciferoj.
Vivo
Fibonacci naskiĝis ĉirkaŭ 1170 al Guglielmo Bonacci, riĉa itala komercisto kaj, laŭ kelkaj rakontoj, ankaŭ la konsulo por Pisa. Guglielmo estris komercan postenon en Beĵaja, nome havenurbo de la sultanlando de la Almohada dinastio en Nordafriko. Fibonacci veturis kun li jam kiel juna knabo, kaj estis en Bugia (nuntempa Beĵaja, Alĝerio) kie li lernis pri la Hind–araba nombrosistemo.[2]
Fibonacci veturis etende ĉirkaŭ la marbordo de la Mediteraneo, laŭ kiu li lernis kun multaj komercantoj kaj lernis pri ties sistemoj fari aritmetikon. Li tuj konstatis la multajn avantaĝojn de la hind-araba sistemo. En 1202 li kompletigis la Liber Abaci (Libro de Abako aŭ Libro de Kalkulado) kiu popularigis hind-arabajn numeralojn en Eŭropo.[2]
Fibonacci gastiĝis ĉe imperiestro Frederiko la 2-a, kiu ĝuis el matematiko kaj scienco. En 1240 la Respubliko Pisa honorigis Fibonacci (referencita kiel Leonardo Bigollo)[3] haviganta al li salajron.
La dato de la morto de Fibonacci ne estas konata, sed oni ĉirkaŭkalkulis inter 1240[4] kaj 1250,[5] plej verŝajne en Pisa.
Liber Abaci (1202)
Pli detalaj informoj troveblas en artikolo Liber Abaci.
Liber Abaci (1202, literumita ankaŭ kiel Liber Abbaci, signife Libro de abako) estas historia libro pri aritmetiko fare de Leonardo of Pisa, konita poste laŭ kromnomo Fibonacci. Liber Abaci estis inter la unuaj okcidentaj libroj kiuj priskribis la hind–arabajn nombrojn tradicie priskribitaj keil "Arabaj Nombroj". Direktante la aplikaĵojn de kaj komercaj negocistoj kaj de matematikistoj, ĝi kontribuis konvinki publikon pri la supereco de la novaj nombroj. La titolo Liber Abaci signifas "La libro de kalkulado". Kvankam ĝi estis tradukita al "La libro de abako", Sigler (2002) verkis ke tio estas eraro: nome intenco de la libro estas priskribi metodojn fari kalkulon sen helpo de abako, kaj Ore (1948) konfirmis, jarcentojn post ties publikigo ke sekvantoj de algorismoj (sekvantoj de la stilo kalkulo montrita en Liber Abaci) restis en konflikto kun la abakistoj (tradiciistoj kiuj plue uzis la abakon kun la romaj nombroj).
En la Liber Abaci (1202), Fibonacci enkondukis la tiel nomata modus Indorum (metodo de Hindianoj), nuntempe konata kiel hind-arabaj nombroj.[6][7] La libro postulis numeradon per la ciferoj 0–9 kaj pozician nombrosistemon. La libro montris la praktikan uzado kaj valoron de la nova araba nombrosistemon per aplikado de nombroj al komerca librotenado, ŝanĝante pezojn kaj mezurojn, kalkuladon de interezo, mon-ŝanĝadon, kaj aliajn aplikaĵojn. La libro estis bone ricevita en la tuta edukita Eŭropo kaj faris profundan afikon super eŭropa pensaro. Oni ne konas ekzistantajn kopiojn de la eldono de 1202 de tiu libro.[8]
La eldono de 1228, unua sekcio, enkondukas la araban nombrosistemon kaj komparas tiun sistemon kun aliaj, kiaj tiu de la romiaj nombroj, kaj la metodojn por konverti la aliajn nombrosistemojn en arabaj nombroj. Anstataŭante la romian nombrosistemon, ties metodon antikvegiptan multobligmetodon, kaj uzante abakon por kalkulado, per la araba nombrosistemo, progresige igis la negockalkuladon plifacile kaj plirapide, kio kondukis al kresko de bankado kaj kalkulado en Eŭropo.[9][10]
La dua sekcio klarigas la uzojn de la arabaj nombroj en negocoj, por ekzemplo konvertante diferencajn valutojn, kaj kalkulante profiton kaj interezojn, kio estis tre grava por la kreskanta banka negocado. La libro ankaŭ studas neraciajn nombrojn kaj primajn nombrojn.[8][9][10]
Liber Abaci metis, kaj solvis, problemon pri la kresko de populacio de kunikloj bazita sur idealaj supozoj. La solvo, generacio post generacio, estis sekvenco de nombroj poste konataj kiel Fibonaĉi-nombroj. Kvankam la verko de Fibonacci nome Liber Abaci enhavas la plej frua konata priskribo de la sekvenco ekster Hindio, la sekvenco estis jam uzataj de hindiaj matematikistoj tiom frue kiom ĉirkaŭ la 6a jarcento.[11][12][13][14]
En la Fibonacci sekvenco de nombroj, ĉiu nombro estas la sumo de la antaŭaj du nombroj. Fibonacci komencis la sekvencon ne per 0, 1, 1, 2, kiel faras modernaj matematikistoj sed per 1, 1, 2, ktp. Li portis la kalkuladon ĝis la 13an lokon (14an en la moderna kalkulado), tio estas 233, kvankam alia manuskripto plialtigas ĝin ĝis la venonta loko: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377.[15][16] Fibonacci ne parolis pri la ora proporcio kiel limo de la proporcio de sinsekvaj nombroj en tiu sekvenco.
Tiel la unuaj fibonaĉi-nombroj estas:
n
F(n)
1
1
2
1
3
2
4
3
5
5
6
8
7
13
8
21
9
34
10
55
11
89
12
144
13
233
14
377
15
610
16
987
17
1597
18
2584
19
4181
20
6765
21
10946
22
17711
23
28657
24
46368
25
75025
26
121393
27
196418
28
317811
29
514229
30
832040
31
1346269
32
2178309
33
3524578
34
5702887
35
9227465
36
14930352
37
24157817
38
39088169
39
63245986
40
102334155
41
165580141
42
267914296
43
433494437
44
701408733
45
1134903170
46
1836311903
47
2971215073
48
4807526976
49
7778742049
50
12586269025
51
20365011074
52
32951280099
53
53316291173
54
86267571272
55
139583862445
56
225851433717
57
365435296162
58
591286729879
59
956722026041
60
1548008755920
61
2504730781961
62
4052739537881
63
6557470319842
64
10610209857723
65
17167680177565
66
27777890035288
67
44945570212853
68
72723460248141
69
117669030460994
70
190392490709135
71
308061521170129
72
498454011879264
73
806515533049393
74
1304969544928657
75
2111485077978050
76
3416454622906707
77
5527939700884757
78
8944394323791464
79
14472334024676221
80
23416728348467685
81
37889062373143906
82
61305790721611591
83
99194853094755497
84
160500643816367088
85
259695496911122585
86
420196140727489673
87
679891637638612258
88
1100087778366101931
89
1779979416004714189
90
2880067194370816120
La Fibonaĉi-nombroj konsistigas progresion kies termoj difinitas per:
,
kaj la ekkondiĉoj:
F(0) = 0
F(1) = 1
alinome:
Propraĵoj
Kaheligo de ortangulo per kvadratoj kies longoj de lateroj estas fibonaĉi-nombroj
En la 19a jarcento, oni konstruis kaj starigis statuon de Fibonacci en Pisa. Nuntempe ĝi situas en la okcidenta koridoro de la Camposanto Monumentale, nome historia tombejo ĉe la Placo de la Mirakloj.[17]
Liber Abaci (1202), libro pri kalkulado (anglalingva traduko fare de Laurence Sigler, 2002)[6]
Practica Geometriae (1220), kompendio de teknikoj pri termezurado, nome mezuro kaj partigado de areoj kaj volumenoj, kaj aliaj temoj en praktika geometrio (anglalingva traduko fare de Barnabas Hughes, Springer, 2008).
Flos (1225), solvoj al problemoj planitaj de Johano de Palermo
Liber quadratorum ("La libro de kvadratoj") pri diofantaj ekvacioj, dediĉita al la imperiestro Frederiko la 2-a. Vidu partikulare la kongruon de kvadrataj nombroj kaj la identecon Brahmagupta–Fibonacci.
↑ 2,02,1Knott, R. "Who was Fibonacci?". Maths.surrey.ac.uk. [1] Alirita la 6an de Marto 2016.
↑Vidu la komencon de Flos: "Incipit flos Leonardi bigolli pisani..." (citita en la dokumento de MS Word nome Sources in Recreational Mathematics: An Annotated BibliographyArkivigite je 2004-07-22 per la retarkivo Wayback Machine de David Singmaster, 18a de Marto 2004 – emfazo aldonita), en angla: "Here starts 'the flower' by Leonardo the wanderer of Pisa..." La baza signifo de "bigollo" ŝajne estas "bona-por-nenio" kaj "veturanto" (tradukebla al "vagemulo", "vagabondo" aŭ "trampo"). A. F. Horadam montras konotacion de "bigollo" kiel "forest-mensa" (vidu unue piednoton de "Eight hundred years young"), kiu estas ankaŭ unu el la konotacioj de la angla vorto "wandering". La traduko "the wanderer" en la citaĵo supre klopodas kombini la variajn konotaciojn de la vorto "bigollo" en unusola anglalingva vorto.
↑Singh, Pamanand (1985). “The so-called fibonacci numbers in ancient and medieval India”, Historia Mathematica12, p. 229–244. doi:10.1016/0315-0860(85)90021-7.
Goetzmann, William N. kaj Rouwenhorst, K.Geert, The Origins of Value: The Financial Innovations That Created Modern Capital Markets (2005, Oxford University Press Inc, USA), ISBN 0-19-517571-9.
Goetzmann, William N., Fibonacci and the Financial Revolution (October 23, 2003), Yale School of Management, International Center for Finance Working Paper No. 03–28