En nuklea fiziko, la disfala vico aŭ diseriĝa vico estas la vico de malsamaj izotopoj, kiuj diseriĝas sinsekve unu en la alian per radiaktiveco, finiĝante je iu stabila izotopo. Komenciĝante je iu donita izotopo, la vico povas havi branĉojn, se iuj el la izotopoj povas diseriĝi laŭ diversaj manieroj; la branĉoj tamen povas poste denove kuniĝi.
Plejparto de radioaktivaj elementoj ne diseriĝas senpere al stabilaj izotopoj, sed trapasas serion de diseriĝoj, ĝis stabila izotopo estas atingita.
La tempo bezonata por ke unu donita atomo de fonta izotopo disfalu al la fina stabila izotopo povas varii larĝe. Ĝi ne nur dependas de la okazanta branĉo de la disfala vico. La tempo variiĝas ankaŭ pro tio ke la radioaktiveco estas spontanea procezo.
La interaj stadioj de disfalado ofte disradias pli grandan radioaktivecon ol la originala radioaktiva izotopo. Se kalkuli entute tra la tempodaŭro de la plena disfalo ĝis la fina stabila izotopo, ĉiu stadio de la disfala ĉeno kontribuas al la tuta kvanto de radioaktivaj disfaloj same multe kiel la fonta izotopo de la ĉeno, czar ĉiu atomo trapasas ĉiujn stadiojn kaj je ĉiu stadio okazigas unu dusfalon. Ekzemple, natura uranio estas ne grave radioaktiva, sed urania erco estas je 13 fojoj pli radioaktiva pro la radiumo kaj aliaj sekvaj izotopoj enhavataj. Ne nur malstabilaj radiumaj izotopoj estas gravaj radioaktivecaj eligantoj, sed kiel la posta stadio en la disfalaj ĉenaj ili ankaŭ generas radonon, kiu estas peza inerta nature okazanta radioaktiva gaso. Roko enhavanta torion aŭ uranion (ekzemple iuj granitoj) disradias radonon kiu povas akumuliĝi en enmetis lokoj kiel subteretaĝoj aŭ subteraj minejoj.
La kvar plej komunaj specoj de radiaktiveco estas alfo-disfalo, beto-minus-disfalo, beto-plus-disfalo (kiu povas esti kiel pozitrona eligo aŭ elektrona kapto), izomera trairo. El ĉi tiuj disfalaj procezoj, nur alfo-disfalo ŝanĝas la atompezan nombro A de la kerno malpligrandigante ĝin per kvar. Pro ĉi tio, preskaŭ ĉiu disfalo rezultas je kerno kies atompeza nombro havas la sama restaĵon post divido je 4. Tiel ĉiuj izotopoj estas disdividaj en kvar klasojn. Membroj de ĉiu ebla disfala ĉeno devas esti plene de unu el ĉi tiuj klasoj.
Tri ĉefaj disfalaj ĉenoj estas observitaj en naturo, kutime nomataj kiel la toria serio, la radiuma serio (ne urania serio), kaj la aktinia serio. Ili estas de tri el ĉi tiuj kvar klasoj, kaj la finaj iliaj eroj estas tri malsamaj stabilaj izotopoj de plumbo. La masnumeroj de ĉiuj izotopoj en ĉi tiuj ĉenoj povas esti prezentita kiel A=4n, A=4n+2, A=4n+3, respektive. La longe vivantaj startantaj izotopoj estas 232Th, 238U, 235U respektive, ili ĉiuj ekzistitas en Tero ekde la formigo. Ankaŭ plutoniaj izotopoj Pu-244 kaj Pu-239 estas trovitaj en spuraj kvantoj sur Tero.
Pro la sufiĉe mallonga duoniĝotempo de ĝia ĉefa natura startanta izotopo 237Np (2,14 milionoj jaroj), la kvara ĉeno, la neptunia serio kun A=4n+1, estas jam estinginta en naturo, krom la fina kurzo-limiganta paŝo, disfalo de 209Bi. La fina izotopo de ĉi tiu ĉeno estas 205Tl.
Ĉiuj kvar ĉenoj ankaŭ produktas heliumon dum alfo-disfalo.
Estas ankaŭ multaj pli mallongaj ĉenoj, ekzemple de karbono-14. Sur la tero, la plejparto de la startantaj izotopoj de ĉi tiuj ĉenoj estas generitaj per kosma radiado.
En la kvar tabeloj pli sube, la malgrandaj branĉoj de disfalo (kun la forkiĝanta rilatumo malpli granda ol 0,0001%) ne estas montritaj. La energio liberigata inkluzivas la tutecan kinetan energion de ĉiu disradiataj partikloj (elektronoj, alfaj partikloj, gamaj kvantumoj, neŭtrinoj, elektronoj de Augerj, ikso-radioj) kaj la desalton de kerno, alprenante ke la originala kerno estis senmova.
En la tabelo pli sube estas donitaj la historiaj nomoj de la nature okazantaj izotopoj. Ĉi tiuj nomoj estis uzataj kiam la disfalaj ĉenoj estis unue esploritaj. De ĉi tiuj nomoj onu povas konkludi la apartan ĉenon al kiu la izotopo apartenas. Ankaŭ, la nomoj havas similecojn: ekzemple, ĉiuj el Tn, Rn, An estas inertaj gasoj.
Izotopo
238U
U
Uran
235U
AcU
Actinuran
234U
UII
Uran II
234Pa
UZ
Uran Z
234mPa
Ŭ2
Uran X2
234Th
Ŭ1
Uran X1
231Th
UY
Uran Y
230Th
IO
Ionium
228Th
RdTh
Radiothor
228Ac
MsTh2
Mesothor 2
228Ra
MsTh1
Mesothor 1
227Th
RdAc
Radioactinium
226Ra
Ra
Radium
224Ra
Tĥ
Thorium X
223Ra
Aĉ
Actinium X
223Fr
AcK
Actinium K
222Rn
Rn
Radon
220Rn
Tn
Thoron
219Rn
An
Actinon
218Po
RaA
Radium A
216Po
ThA
Thorium A
215Po
AcA
Actinium A
214Po
RaC'
Radium C'
214Bi
RaC
Radium C
214Pb
RaB
Radium B
212Po
ThC'
Thorium C'
212Bi
ThC
Thorium C
212Pb
ThB
Thorium B
211Bi
AcC
Actinium C
211Po
AcC'
Actinium C'
211Pb
AcB
Actinium B
210Po
RaF
Radium F
210Bi
RaE
Radium E
210Pb
RaD
Radium D
210Tl
RaC"
Radium C"
208Tl
ThC"
Thorium C"
207Tl
AcC"
Actinium C"
Beto-disfalaj ĉenoj
Beto-disfalaj ĉenoj aperas en fisiaj produktoj de uranio kaj plutonio. Pro tio ke la pezaj originalaj kernoj ĉiam havas pli grandan proporcion de neŭtronoj, la kernoj produktataj en fisio preskaŭ ĉiam aperas kun neŭtrono-protona rilatumo grave pli granda ol tio kio estas stabila por ilia maso. Pro ĉi tio ili sperti multajn beto-minus-disfalojn sinsekve, ĉiufoje konvertante neŭtronon al protono. La unuaj disfaloj havas pli grandan disfalan energio kaj pli mallongan duoniĝotempon; la lastaj disfaloj povas havi malaltan disfalan energion aŭ longan duoniĝotempon.
Ekzemple, uranio-235 havas 92 protonojn kaj 143 neŭtronojn. Fisio prenas plian neŭtronon, tiam produktas du aŭ tri pliajn neŭtronojn; estu ekzemple 92 protonoj kaj 142 neŭtronoj estas haveblaj por la du fisiaj produktoj. Supozu ekzemple ke ili havus mason 99 kun 39 protonoj kaj 60 neŭtronoj (itrio-99), kaj mason 135 kun 53 protonoj kaj 82 neŭtronoj (jodo-135); tiam la disfalaj ĉenoj estas:
D. C. Hoffmann, F. O. Lawrence, J. L. Mewherter, F. M. Rourke: "Detekto de Plutonio-244 en Naturo", en: Naturo1971, 234, 132–134; COI:10.1038/234132a0.