Yamabe invariant

In mathematics, in the field of differential geometry, the Yamabe invariant, also referred to as the sigma constant, is a real number invariant associated to a smooth manifold that is preserved under diffeomorphisms. It was first written down independently by O. Kobayashi and R. Schoen and takes its name from H. Yamabe. Used by Vincent Moncrief and Arthur Fischer to study reduced Hamiltonian for Einstein's equations.

Definition

Let be a compact smooth manifold (without boundary) of dimension . The normalized Einstein–Hilbert functional assigns to each Riemannian metric on a real number as follows:

where is the scalar curvature of and is the volume density associated to the metric . The exponent in the denominator is chosen so that the functional is scale-invariant: for every positive real constant , it satisfies . We may think of as measuring the average scalar curvature of over . It was conjectured by Yamabe that every conformal class of metrics contains a metric of constant scalar curvature (the so-called Yamabe problem); it was proven by Yamabe, Trudinger, Aubin, and Schoen that a minimum value of is attained in each conformal class of metrics, and in particular this minimum is achieved by a metric of constant scalar curvature.

We define

where the infimum is taken over the smooth real-valued functions on . This infimum is finite (not ): Hölder's inequality implies . The number is sometimes called the conformal Yamabe energy of (and is constant on conformal classes).

A comparison argument due to Aubin shows that for any metric , is bounded above by , where is the standard metric on the -sphere . It follows that if we define

where the supremum is taken over all metrics on , then (and is in particular finite). The real number is called the Yamabe invariant of .

The Yamabe invariant in two dimensions

In the case that , (so that M is a closed surface) the Einstein–Hilbert functional is given by

where is the Gauss curvature of g. However, by the Gauss–Bonnet theorem, the integral of the Gauss curvature is given by , where is the Euler characteristic of M. In particular, this number does not depend on the choice of metric. Therefore, for surfaces, we conclude that

For example, the 2-sphere has Yamabe invariant equal to , and the 2-torus has Yamabe invariant equal to zero.

Examples

In the late 1990s, the Yamabe invariant was computed for large classes of 4-manifolds by Claude LeBrun and his collaborators. In particular, it was shown that most compact complex surfaces have negative, exactly computable Yamabe invariant, and that any Kähler–Einstein metric of negative scalar curvature realizes the Yamabe invariant in dimension 4. It was also shown that the Yamabe invariant of is realized by the Fubini–Study metric, and so is less than that of the 4-sphere. Most of these arguments involve Seiberg–Witten theory, and so are specific to dimension 4.

An important result due to Petean states that if is simply connected and has dimension , then . In light of Perelman's solution of the Poincaré conjecture, it follows that a simply connected -manifold can have negative Yamabe invariant only if . On the other hand, as has already been indicated, simply connected -manifolds do in fact often have negative Yamabe invariants.

Below is a table of some smooth manifolds of dimension three with known Yamabe invariant. In dimension 3, the number is equal to and is often denoted .

notes
the 3-sphere
the trivial 2-sphere bundle over [1]
the unique non-orientable 2-sphere bundle over
computed by Bray and Neves
computed by Bray and Neves
the 3-torus

By an argument due to Anderson, Perelman's results on the Ricci flow imply that the constant-curvature metric on any hyperbolic 3-manifold realizes the Yamabe invariant. This provides us with infinitely many examples of 3-manifolds for which the invariant is both negative and exactly computable.

Topological significance

The sign of the Yamabe invariant of holds important topological information. For example, is positive if and only if admits a metric of positive scalar curvature.[2] The significance of this fact is that much is known about the topology of manifolds with metrics of positive scalar curvature.

See also

Notes

  1. ^ See Schoen, pg. 135
  2. ^ Akutagawa, et al., pg. 73

References

  • M.T. Anderson, "Canonical metrics on 3-manifolds and 4-manifolds", Asian J. Math. 10 127–163 (2006).
  • K. Akutagawa, M. Ishida, and C. LeBrun, "Perelman's invariant, Ricci flow, and the Yamabe invariants of smooth manifolds", Arch. Math. 88, 71–76 (2007).
  • H. Bray and A. Neves, "Classification of prime 3-manifolds with Yamabe invariant greater than ", Ann. of Math. 159, 407–424 (2004).
  • M.J. Gursky and C. LeBrun, "Yamabe invariants and structures", Geom. Funct. Anal. 8965–977 (1998).
  • O. Kobayashi, "Scalar curvature of a metric with unit volume", Math. Ann. 279, 253–265, 1987.
  • C. LeBrun, "Four-manifolds without Einstein metrics", Math. Res. Lett. 3 133–147 (1996).
  • C. LeBrun, "Kodaira dimension and the Yamabe problem," Comm. Anal. Geom. 7 133–156 (1999).
  • J. Petean, "The Yamabe invariant of simply connected manifolds", J. Reine Angew. Math. 523 225–231 (2000).
  • R. Schoen, "Variational theory for the total scalar curvature functional for Riemannian metrics and related topics", Topics in calculus of variations, Lect. Notes Math. 1365, Springer, Berlin, 120–154, 1989.

Read other articles:

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (July 2017) (Learn how and when to remove this template message) 2012–13 UAFA Club Cupكأس الإتحاد العربي للأندية 2012–13Tournament detailsDates11 September 2012 – 14 May 2013Teams22 (from 1 association)Final positionsChampions USM Alger (1st ...

 

Kerumanan orang di Shibuya, Tokyo. Kehidupan nyata atau dunia nyata adalah frasa yang mulanya digunakan dalam sastra untuk membedakan antara dunia nyata dan rekaan atau dunia ideal, dan dalam drama untuk membedakan pemain asli dan karakter yang diperankan. Belakangan ini, frasa ini juga digunakan untuk membedakan antara kejadian atau orang yang ditemui di dunia nyata dan di dunia maya atau internet. Pembeda dari dunia maya Dalam dunia maya, kehidupan nyata berarti kehidupan luar jaringan atau...

 

American politician and judge For the diplomat, see David McK. Key. Senator Key redirects here. For other uses, see Senator Key (disambiguation). David M. KeyJudge of the United States District Court for the Eastern District of TennesseeJudge of the United States District Court for the Middle District of TennesseeIn officeMay 27, 1880 – January 21, 1895Appointed byRutherford B. HayesPreceded byConnally Findlay TriggSucceeded byCharles Dickens Clark27th United States Postmaster Gene...

Wagga redirects here. For other uses, see Wagga (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Wagga Wagga – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this template message) City in New South Wales, AustraliaWagga WaggaNew South WalesAn aeria...

 

Madusari beralih ke halaman ini. Untuk kegunaan lain, lihat Madusari (disambiguasi). MadusariDesaKantor Desa MadusariNegara IndonesiaProvinsiJawa TengahKabupatenCilacapKecamatanWanarejaKode pos53265Kode Kemendagri33.01.15.2016 Luas1.275,4000 HaJumlah penduduk-Kepadatan- Suasana jalan desa Madusari adalah desa di kecamatan Wanareja, Cilacap, Jawa Tengah, Indonesia. Desa ini terletak di ujung barat Kabupaten Cilacap yang berbatasan langsung dengan Provinsi Jawa Barat. Desa ini berjarak sek...

 

Method of transferring large biomolecules onto a carrier for analysis Blotting Compass In molecular biology and genetics, a blot is a method of transferring large biomolecules (proteins, DNA or RNA) onto a carrier, such as a membrane composed of nitrocellulose, polyvinylidene fluoride or nylon. In many instances, this is done after a gel electrophoresis, transferring the molecules from the gel onto the blotting membrane, and other times adding the samples directly onto the membrane. After the...

SUV by the Japanese automaker Isuzu Motor vehicle Isuzu TrooperSecond generation Isuzu Trooper (United States)OverviewManufacturerIsuzuProduction1981–2002AssemblyJapan: Fujisawa, Kanagawa (Fujisawa Plant)Body and chassisClassFull-size SUVLayoutfront engine, selectable four-wheel-driveChronologySuccessorIsuzu AscenderIsuzu AxiomChevrolet/Holden Captiva (Chevrolet Trooper/Holden Jackaroo/Monterey)Holden Colorado 7 (Australia)SsangYong Rexton (SsangYong Korando Family)Acura MDX (Acura SLX) The...

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

سفارة تونس لدى مصر تونس مصر البلد مصر  المكان القاهرة العنوان 26 الجزيرة، عمر الخيام، الزمالك السفير محمد بن يوسف الاختصاص مصر  تعديل مصدري - تعديل   سفارة تونس في مصر هي البعثة الدبلوماسية لجمهورية تونس لدى جمهورية مصر العربية، وتقع بالعاصمة القاهرة.[1] السفراء �...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Lord Edward Cavendish – news · newspapers · books · scholar · JSTOR (June 2008) (Learn how and when to remove this message) Lieutenant-ColonelLord Edward CavendishMPa good fellow. Caricature by Spy published in Vanity Fair in 1886.Born28 January 1838Marylebone...

 

Koordinat: 53°47′49″N 1°32′42″W / 53.797°N 1.545°W / 53.797; -1.545 Pintu masuk Leeds Shopping Plaza Leeds Shopping Plaza merupakan pusat perbelanjaan di Leeds, Inggris dikelilingi oleh jalan-jalan di Bond Street, Albion Street, Boar Lane dan Lower Basinghall Street. Dibuka pada tahun 1977 sebagai Bond Street Centre, di lokasi sebelumnya ditempati oleh bangunan era Victoria dan diperbaharui pada tahun 1996 sekaligus mengubah namanya seperti sekarang, memper...

43rd Premier of New South Wales and Minister for Western Sydney, 2011–2014 The HonourableBarry O'FarrellAOO'Farrell in 2020Australian High Commissioner to IndiaIn office21 May 2020 – 30 June 2023Preceded byHarinder SidhuSucceeded byPhilip Green43rd Premier of New South WalesElections: 2011In office28 March 2011 – 17 April 2014MonarchElizabeth IIGovernorMarie BashirDeputyAndrew StonerPreceded byKristina KeneallySucceeded byMike Baird19th Leader of the New South Wales Li...

 

CDP in California, United StatesCastro Valley, CaliforniaCDPCastro Valley, 2022Location of Castro Valley within Alameda County, CaliforniaCastro Valley, CaliforniaLocation in the United StatesCoordinates: 37°41′39″N 122°05′11″W / 37.69417°N 122.08639°W / 37.69417; -122.08639[1]Country United StatesState CaliforniaCountyAlamedaGovernment • State SenateNancy Skinner (D)[2] • State AssemblyLiz Ortega&...

 

Dewan Perwakilan Rakyat Daerah Kabupaten MamujuDewan Perwakilan RakyatKabupaten Mamuju2019–2024JenisJenisUnikameral Jangka waktu5 tahunSejarahSesi baru dimulai2 September 2019PimpinanKetuaAzwar Anshari Habsi (NasDem) sejak 15 Oktober 2019 Wakil Ketua ISyamsuddin Hatta (Demokrat) sejak 15 Oktober 2019 Wakil Ketua IIH. Andi Dody Hermawan (Hanura) sejak 15 Oktober 2019 KomposisiAnggota30Partai & kursi  PDI-P (1)   NasDem (9)   Hanura (4)  ...

International sporting eventAthletics at the1971 Pan American GamesTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmen5000 mmen10,000 mmen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmen3000 msteeplechasemen4×100 m relaymenwomen4×400 m relaymenwomenRoad eventsMarathonmen20 km walkmen50 km walkmenField eventsHigh jumpmenwomenPole vaultmenLong jumpmenwomenTriple jumpmenShot putmenwomenDiscus throwmenwomenHammer throwmenJavelin throwmenwomenCombined eventsPentathlonwome...

 

Town and municipality in Vojvodina, SerbiaAlibunar Алибунар (Serbian)Alibunar (Romanian)Alibunár (Hungarian)Town and municipalityPhotos of Alibunar Coat of armsLocation of Alibunar within SerbiaCoordinates: 45°4′50″N 20°57′56″E / 45.08056°N 20.96556°E / 45.08056; 20.96556Country SerbiaProvince VojvodinaDistrictSouth BanatGovernment • MayorZorana Bratić (SNS)Elevation71 m (233 ft)Population (2011)...

 

Roberto Rossellini羅伯托·羅塞里尼导演出生(1906-05-08)1906年5月8日 意大利王國羅馬逝世1977年6月3日(1977歲—06—03)(71歲) 義大利羅馬职业導演、製片、编剧语言義大利語、德語、英語教育程度莱斯大学配偶 Marcella De Marchis (1936.09.26~1950,二子) 英格麗·褒曼(1950~1957,三子女) Sonali Das Gupta(1957~1977,一子一女) 儿女 Marco Renzo Roberto 伊莎贝拉·罗塞里尼(双胞胎) Isotta(双�...

Hans Hermann Ludwig von ReuterNascitaGuben, 9 febbraio 1869 MortePotsdam, 18 dicembre 1943 Cause della mortemorte naturale Dati militariPaese servito Impero tedesco Forza armata Kaiserliche Marine ArmaMarina militare GradoAmmiraglio GuerrePrima guerra mondiale BattaglieBattaglia di Dogger Bank, battaglia dello Jutland, battaglia di Helgoland (1917), Autoaffondamento della flotta tedesca a Scapa Flow. [1] voci di militari presenti su Wikipedia Manuale Ludwig von Reuter (Gu...

 

Photography museum in Manhattan, New York International Center of PhotographyInternational Center of Photography at 79 Essex StreetEstablished1974Location79 Essex Street, Manhattan, New YorkCoordinates40°43′04.9″N 73°59′19.0″W / 40.718028°N 73.988611°W / 40.718028; -73.988611DirectorDavid E. LittlePublic transit accessBus: M21, M103Subway: ​ at Second AvenueWebsitewww.icp.org The International Center of Photography (ICP) is a photography museum and sc...