Share to: share facebook share twitter share wa share telegram print page

Waring's problem

In number theory, Waring's problem asks whether each natural number k has an associated positive integer s such that every natural number is the sum of at most s natural numbers raised to the power k. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers. Waring's problem was proposed in 1770 by Edward Waring, after whom it is named. Its affirmative answer, known as the Hilbert–Waring theorem, was provided by Hilbert in 1909.[1] Waring's problem has its own Mathematics Subject Classification, 11P05, "Waring's problem and variants".

Relationship with Lagrange's four-square theorem

Long before Waring posed his problem, Diophantus had asked whether every positive integer could be represented as the sum of four perfect squares greater than or equal to zero. This question later became known as Bachet's conjecture, after the 1621 translation of Diophantus by Claude Gaspard Bachet de Méziriac, and it was solved by Joseph-Louis Lagrange in his four-square theorem in 1770, the same year Waring made his conjecture. Waring sought to generalize this problem by trying to represent all positive integers as the sum of cubes, integers to the fourth power, and so forth, to show that any positive integer may be represented as the sum of other integers raised to a specific exponent, and that there was always a maximum number of integers raised to a certain exponent required to represent all positive integers in this way.

The number g(k)

For every , let denote the minimum number of th powers of naturals needed to represent all positive integers. Every positive integer is the sum of one first power, itself, so . Some simple computations show that 7 requires 4 squares, 23 requires 9 cubes,[2] and 79 requires 19 fourth powers; these examples show that , , and . Waring conjectured that these lower bounds were in fact exact values.

Lagrange's four-square theorem of 1770 states that every natural number is the sum of at most four squares. Since three squares are not enough, this theorem establishes . Lagrange's four-square theorem was conjectured in Bachet's 1621 edition of Diophantus's Arithmetica; Fermat claimed to have a proof, but did not publish it.[3]

Over the years various bounds were established, using increasingly sophisticated and complex proof techniques. For example, Liouville showed that is at most 53. Hardy and Littlewood showed that all sufficiently large numbers are the sum of at most 19 fourth powers.

That was established from 1909 to 1912 by Wieferich[4] and A. J. Kempner,[5] in 1986 by R. Balasubramanian, F. Dress, and J.-M. Deshouillers,[6][7] in 1964 by Chen Jingrun, and in 1940 by Pillai.[8]

Let and respectively denote the integral and fractional part of a positive real number . Given the number , only and can be used to represent ; the most economical representation requires terms of and terms of . It follows that is at least as large as . This was noted by J. A. Euler, the son of Leonhard Euler, in about 1772.[9] Later work by Dickson, Pillai, Rubugunday, Niven[10] and many others has proved that

No value of is known for which . Mahler[11] proved that there can only be a finite number of such , and Kubina and Wunderlich[12] have shown that any such must satisfy . Thus it is conjectured that this never happens, that is, for every positive integer .

The first few values of are:

1, 4, 9, 19, 37, 73, 143, 279, 548, 1079, 2132, 4223, 8384, 16673, 33203, 66190, 132055, 263619, 526502, 1051899, ... (sequence A002804 in the OEIS).

The number G(k)

From the work of Hardy and Littlewood,[13] the related quantity G(k) was studied with g(k). G(k) is defined to be the least positive integer s such that every sufficiently large integer (i.e. every integer greater than some constant) can be represented as a sum of at most s positive integers to the power of k. Clearly, G(1) = 1. Since squares are congruent to 0, 1, or 4 (mod 8), no integer congruent to 7 (mod 8) can be represented as a sum of three squares, implying that G(2) ≥ 4. Since G(k) ≤ g(k) for all k, this shows that G(2) = 4. Davenport showed[14] that G(4) = 16 in 1939, by demonstrating that any sufficiently large number congruent to 1 through 14 mod 16 could be written as a sum of 14 fourth powers (Vaughan in 1986[15] and 1989[16] reduced the 14 biquadrates successively to 13 and 12). The exact value of G(k) is unknown for any other k, but there exist bounds.

Lower bounds for G(k)

Bounds
1 = G(1) = 1
4 = G(2) = 4
4 ≤ G(3) ≤ 7
16 = G(4) = 16
6 ≤ G(5) ≤ 17
9 ≤ G(6) ≤ 24
8 ≤ G(7) ≤ 33
32 ≤ G(8) ≤ 42
13 ≤ G(9) ≤ 50
12 ≤ G(10) ≤ 59
12 ≤ G(11) ≤ 67
16 ≤ G(12) ≤ 76
14 ≤ G(13) ≤ 84
15 ≤ G(14) ≤ 92
16 ≤ G(15) ≤ 100
64 ≤ G(16) ≤ 109
18 ≤ G(17) ≤ 117
27 ≤ G(18) ≤ 125
20 ≤ G(19) ≤ 134
25 ≤ G(20) ≤ 142

The number G(k) is greater than or equal to

2r+2 if k = 2r with r ≥ 2, or k = 3 × 2r;
pr+1 if p is a prime greater than 2 and k = pr(p − 1);
(pr+1 − 1)/2   if p is a prime greater than 2 and k = pr(p − 1)/2;
k + 1 for all integers k greater than 1.

In the absence of congruence restrictions, a density argument suggests that G(k) should equal k + 1.

Upper bounds for G(k)

G(3) is at least 4 (since cubes are congruent to 0, 1 or −1 mod 9); for numbers less than 1.3×109, 1290740 is the last to require 6 cubes, and the number of numbers between N and 2N requiring 5 cubes drops off with increasing N at sufficient speed to have people believe that G(3) = 4;[17] the largest number now known not to be a sum of 4 cubes is 7373170279850,[18] and the authors give reasonable arguments there that this may be the largest possible. The upper bound G(3) ≤ 7 is due to Linnik in 1943.[19] (All nonnegative integers require at most 9 cubes, and the largest integers requiring 9, 8, 7, 6 and 5 cubes are conjectured to be 239, 454, 8042, 1290740 and 7373170279850, respectively.)

13792 is the largest number to require 17 fourth powers (Deshouillers, Hennecart and Landreau showed in 2000[20] that every number between 13793 and 10245 required at most 16, and Kawada, Wooley and Deshouillers extended[21] Davenport's 1939 result to show that every number above 10220 required at most 16). Numbers of the form 31·16n always require 16 fourth powers.

68578904422 is the last known number that requires 9 fifth powers (Integer sequence S001057, Tony D. Noe, Jul 04 2017), 617597724 is the last number less than 1.3×109 that requires 10 fifth powers, and 51033617 is the last number less than 1.3×109 that requires 11.

The upper bounds on the right with k = 5, 6, ..., 20 are due to Vaughan and Wooley.[22]

Using his improved Hardy–Ramanujan–Littlewood method, I. M. Vinogradov published numerous refinements leading to

in 1947[23] and, ultimately,

for an unspecified constant C and sufficiently large k in 1959.[24]

Applying his p-adic form of the Hardy–Ramanujan–Littlewood–Vinogradov method to estimating trigonometric sums, in which the summation is taken over numbers with small prime divisors, Anatolii Alexeevitch Karatsuba obtained[25] in 1985 a new estimate, for :

Further refinements were obtained by Vaughan in 1989.[16]

Wooley then established that for some constant C,[26]

Vaughan and Wooley's survey article from 2002 was comprehensive at the time.[22]

See also

Notes

  1. ^ Hilbert, David (1909). "Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem)". Mathematische Annalen (in German). 67 (3): 281–300. doi:10.1007/bf01450405. MR 1511530. S2CID 179177986.
  2. ^ Remember we restrict ourselves to natural numbers. With general integers, it is not hard to write 23 as the sum of 4 cubes, e.g. or .
  3. ^ Dickson, Leonard Eugene (1920). "Chapter VIII". History of the Theory of Numbers. Vol. II: Diophantine Analysis. Carnegie Institute of Washington.
  4. ^ Wieferich, Arthur (1909). "Beweis des Satzes, daß sich eine jede ganze Zahl als Summe von höchstens neun positiven Kuben darstellen läßt". Mathematische Annalen (in German). 66 (1): 95–101. doi:10.1007/BF01450913. S2CID 121386035.
  5. ^ Kempner, Aubrey (1912). "Bemerkungen zum Waringschen Problem". Mathematische Annalen (in German). 72 (3): 387–399. doi:10.1007/BF01456723. S2CID 120101223.
  6. ^ Balasubramanian, Ramachandran; Deshouillers, Jean-Marc; Dress, François (1986). "Problème de Waring pour les bicarrés. I. Schéma de la solution" [Waring's problem for biquadrates. I. Sketch of the solution]. Comptes Rendus de l'Académie des Sciences, Série I (in French). 303 (4): 85–88. MR 0853592.
  7. ^ Balasubramanian, Ramachandran; Deshouillers, Jean-Marc; Dress, François (1986). "Problème de Waring pour les bicarrés. II. Résultats auxiliaires pour le théorème asymptotique" [Waring's problem for biquadrates. II. Auxiliary results for the asymptotic theorem]. Comptes Rendus de l'Académie des Sciences, Série I (in French). 303 (5): 161–163. MR 0854724.
  8. ^ Pillai, S. S. (1940). "On Waring's problem g(6) = 73". Proc. Indian Acad. Sci. 12: 30–40. doi:10.1007/BF03170721. MR 0002993. S2CID 185097940.
  9. ^ L. Euler, "Opera posthuma" (1), 203–204 (1862).
  10. ^ Niven, Ivan M. (1944). "An unsolved case of the Waring problem". American Journal of Mathematics. 66 (1). The Johns Hopkins University Press: 137–143. doi:10.2307/2371901. JSTOR 2371901. MR 0009386.
  11. ^ Mahler, Kurt (1957). "On the fractional parts of the powers of a rational number II". Mathematika. 4 (2): 122–124. doi:10.1112/s0025579300001170. MR 0093509.
  12. ^ Kubina, Jeffrey M.; Wunderlich, Marvin C. (1990). "Extending Waring's conjecture to 471,600,000". Math. Comp. 55 (192): 815–820. Bibcode:1990MaCom..55..815K. doi:10.2307/2008448. JSTOR 2008448. MR 1035936.
  13. ^ Hardy, G. H.; Littlewood, J. E. (1922). "Some problems of Partitio Numerorum: IV. The singular series in Waring's Problem and the value of the number G(k)". Mathematische Zeitschrift. 12 (1): 161–188. doi:10.1007/BF01482074. ISSN 0025-5874.
  14. ^ Davenport, H. (1939). "On Waring's Problem for Fourth Powers". Annals of Mathematics. 40 (4): 731–747. Bibcode:1939AnMat..40..731D. doi:10.2307/1968889. JSTOR 1968889.
  15. ^ Vaughan, R. C. (1986). "On Waring's Problem for Smaller Exponents". Proceedings of the London Mathematical Society. s3-52 (3): 445–463. doi:10.1112/plms/s3-52.3.445.
  16. ^ a b Vaughan, R. C. (1989). "A new iterative method in Waring's problem". Acta Mathematica. 162: 1–71. doi:10.1007/BF02392834. ISSN 0001-5962.
  17. ^ Nathanson (1996, p. 71).
  18. ^ Deshouillers, Jean-Marc; Hennecart, François; Landreau, Bernard; I. Gusti Putu Purnaba, Appendix by (2000). "7373170279850". Mathematics of Computation. 69 (229): 421–439. doi:10.1090/S0025-5718-99-01116-3.
  19. ^ U. V. Linnik. "On the representation of large numbers as sums of seven cubes". Mat. Sb. N.S. 12(54), 218–224 (1943).
  20. ^ Deshouillers, Jean-Marc; Hennecart, François; Landreau, Bernard (2000). "Waring's Problem for sixteen biquadrates – numerical results". Journal de théorie des nombres de Bordeaux. 12 (2): 411–422. doi:10.5802/jtnb.287.
  21. ^ Deshouillers, Jean-Marc; Kawada, Koichi; Wooley, Trevor D. (2005). "On Sums of Sixteen Biquadrates". Mémoires de la Société Mathématique de France. 1: 1–120. doi:10.24033/msmf.413. ISSN 0249-633X.
  22. ^ a b Vaughan, R. C.; Wooley, Trevor (2002). "Waring's Problem: A Survey". In Bennet, Michael A.; Berndt, Bruce C.; Boston, Nigel; Diamond, Harold G.; Hildebrand, Adolf J.; Philipp, Walter (eds.). Number Theory for the Millennium. Vol. III. Natick, MA: A. K. Peters. pp. 301–340. ISBN 978-1-56881-152-9. MR 1956283.
  23. ^ Vinogradov, Ivan Matveevich (1 Sep 2004) [1947]. The Method of Trigonometrical Sums in the Theory of Numbers. Translated by Roth, K.F.; Davenport, Anne. Mineola, NY: Dover Publications. ISBN 978-0-486-43878-8.
  24. ^ Vinogradov, I. M. (1959). "On an upper bound for $G(n)$". Izv. Akad. Nauk SSSR Ser. Mat. (in Russian). 23 (5): 637–642.
  25. ^ Karatsuba, A. A. (1985). "On the function G(n) in Waring's problem". Izv. Akad. Nauk SSSR Ser. Mat. 27 (4): 935–947. Bibcode:1986IzMat..27..239K. doi:10.1070/IM1986v027n02ABEH001176.
  26. ^ Vaughan, R. C. (1997). The Hardy–Littlewood method. Cambridge Tracts in Mathematics. Vol. 125 (2nd ed.). Cambridge: Cambridge University Press. ISBN 0-521-57347-5. Zbl 0868.11046.

References

  • G. I. Arkhipov, V. N. Chubarikov, A. A. Karatsuba, "Trigonometric sums in number theory and analysis". Berlin–New-York: Walter de Gruyter, (2004).
  • G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, "Theory of multiple trigonometric sums". Moscow: Nauka, (1987).
  • Yu. V. Linnik, "An elementary solution of the problem of Waring by Schnirelman's method". Mat. Sb., N. Ser. 12 (54), 225–230 (1943).
  • R. C. Vaughan, "A new iterative method in Waring's problem". Acta Mathematica (162), 1–71 (1989).
  • I. M. Vinogradov, "The method of trigonometrical sums in the theory of numbers". Trav. Inst. Math. Stekloff (23), 109 pp. (1947).
  • I. M. Vinogradov, "On an upper bound for G(n)". Izv. Akad. Nauk SSSR Ser. Mat. (23), 637–642 (1959).
  • I. M. Vinogradov, A. A. Karatsuba, "The method of trigonometric sums in number theory", Proc. Steklov Inst. Math., 168, 3–30 (1986); translation from Trudy Mat. Inst. Steklova, 168, 4–30 (1984).
  • Ellison, W. J. (1971). "Waring's problem". American Mathematical Monthly. 78 (1): 10–36. doi:10.2307/2317482. JSTOR 2317482. Survey, contains the precise formula for G(k), a simplified version of Hilbert's proof and a wealth of references.
  • Khinchin, A. Ya. (1998). Three Pearls of Number Theory. Mineola, NY: Dover. ISBN 978-0-486-40026-6. Has an elementary proof of the existence of G(k) using Schnirelmann density.
  • Nathanson, Melvyn B. (1996). Additive Number Theory: The Classical Bases. Graduate Texts in Mathematics. Vol. 164. Springer-Verlag. ISBN 0-387-94656-X. Zbl 0859.11002. Has proofs of Lagrange's theorem, the polygonal number theorem, Hilbert's proof of Waring's conjecture and the Hardy–Littlewood proof of the asymptotic formula for the number of ways to represent N as the sum of s kth powers.
  • Hans Rademacher and Otto Toeplitz, The Enjoyment of Mathematics (1933) (ISBN 0-691-02351-4). Has a proof of the Lagrange theorem, accessible to high-school students.

Read other articles:

سعد سرور معلومات شخصية الاسم الكامل سعد سرور مسعود سرور بن بني ياس الميلاد 19 يوليو 1990 (العمر 33 سنة)كلباء، الشارقة الطول 1.73 م (5 قدم 8 بوصة) مركز اللعب مدافع الجنسية الإمارات العربية المتحدة  مسيرة الشباب سنوات فريق النادي الأهلي 2010 → الجزيرة (إعارة) 0 2014–2016 بني ياس 3 (0)…

Península ibérica Península Imagen satelital de la península ibéricaUbicación administrativaPaís España, Portugal, Andorra y Francia (Estados soberanos) Gibraltar (territorio británico de ultramar)Ubicación geográficaContinente EuropaMar / océano océano Atlántico (oeste y norte)mar Mediterráneo (sur y este)Estrecho estrecho de Gibraltar (al sur)Coordenadas 40°14′24″N 4°14′21″O / 40.24, -4.2391666666667Otros datosSuperficie 596 740 km²[editar da…

Approximation of the vernacular areas of Jacksonville:   1. Urban core neighborhoods – city limits before Consolidation   2. Arlington   3. Southside   4. Westside   5. Northside   6. Beaches There are more than 500 neighborhoods within the area of Jacksonville, Florida, the largest city in the contiguous United States by area.[1] These include Downtown Jacksonville and surrounding neighborhoods.[2] Additionally, great…

Halaman ini berisi artikel tentang karya fiksi detektif. Untuk drama komedi, lihat Un fil à la patte. Untuk frase, lihat Lempar seekor kucing di tengah burung dara. Kucing di Tengah Buruh Dara Ilustrasi edisi Inggris pertamaPengarangAgatha ChristiePerancang sampulTidak diketahuiNegaraBritania RayaBahasaInggrisGenreNovel kejahatanPenerbitCollins Crime ClubTanggal terbit2 November 1959Jenis mediaCetak (sampul keras & sampul kertas)Halaman256 halaman (edisi pertama, sampul keras…

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (فبراير 2018) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إ…

Capilla de la Virgen de la Paloma Vista de la fachada de la capilla (c. 1895)LocalizaciónPaís EspañaDivisión MadridLocalidad MadridDirección Calle de la PalomaCoordenadas 40°24′30″N 3°42′43″O / 40.40835752705, -3.7118298614899Información religiosaDiócesis Archidiócesis de ToledoDiócesis de Madrid-Alcalá (Desde 1884)Estatus Sustituida por la iglesia de la Virgen de la Paloma y de San Pedro el RealAdvocación Virgen de la PalomaHistoria del edificioFundación 17…

Postumes Porträt Pierre Méchains, 1824 von Narcisse Garnier nach Kupferstichen gemalt Pierre-François-André Méchain (* 16. August 1744 in Laon, Frankreich; † 20. September 1804 in Castellón de la Plana, Spanien) war ein französischer Astronom und Geograph. Er entdeckte acht Kometen sowie 26 Objekte außerhalb des Sonnensystems und nahm an einer Expedition teil, deren Ergebnis als Definition des Meters diente. Inhaltsverzeichnis 1 Leben und Werk 2 Siehe auch 3 Literatur 4 Weblinks 5 Einz…

Arauco PradoDatos generalesNombre Club Arauco PradoFundación 3 de julio de 1954 (69 años)InstalacionesEstadio Estadio Félix Capriles Cochabamba, BoliviaCapacidad 32.000 Titular Alternativo Última temporadaLiga Asociación de Fútbol Cochabamba(Adecuación 2011) 4.º [editar datos en Wikidata] El Club Arauco Prado es un club de fútbol de la ciudad de Cochabamba, Bolivia. Fue fundado el 3 de julio de 1954 y actualmente juega en la Asociación de Fútbol Cochabamba. Historia El …

Ten artykuł dotyczy miasta w Niemczech. Zobacz też: inne znaczenia tego słowa. Hagen Herb Flaga Państwo  Niemcy Kraj związkowy  Nadrenia Północna-Westfalia Burmistrz Erik O. Schulz Powierzchnia 160,35 km² Populacja (31.12.2015)• liczba ludności• gęstość 189 044[1]1 179 os./km² Nr kierunkowy 02331 Kod pocztowy 58089–58099, 58119, 58135 Tablice rejestracyjne HA Położenie na mapie Nadrenii Północnej-WestfaliiHagen Położenie na mapie NiemiecHage…

50 femmes ont siégé au Sénat des États-Unis depuis sa création en 1789[1]. La première femme à siéger au Sénat est Rebecca Latimer Felton en 1922 (pour une seule journée), mais la première femmes à être élue est Hattie Caraway en 1932. 14 femmes ont été nommés ; dont la moitié afin de succéder à leurs défunts époux. À la suite des élections sénatoriales de 2016, 21 femmes siègent au Sénat, soit 21 % du total des membres. Cela constitue un record historique. F…

HFadly NurzalS. AgAnggota DPR-RIPetahanaMulai menjabat 2014PresidenJoko Widodo Informasi pribadiLahir27 Maret 1972 (umur 51)Tanjung Balai, AsahanPartai politik  PPPSuami/istriLilia WidyastutiAlma materIAIN Sumatera UtaraSunting kotak info • L • B Fadly Nurzal (lahir 27 Maret 1972) adalah seorang Politikus Indonesia. Ia terpilih menjadi anggota DPR-RI periode 2014-2019 dari Partai Persatuan Pembangunan daerah Pemilihan Sumatera Utara 3. Riwayat Hidup Latar Belakan…

برنس جونسون معلومات شخصية اسم الولادة (بالإنجليزية: Prince Yormie Johnson)‏  الميلاد 6 يوليو 1952 (71 سنة)  مقاطعة نيمبا  مواطنة ليبيريا  الحياة العملية المهنة سياسي،  وضابط  الحزب الاتحاد الوطني للتقدم الديمقراطي  اللغات الإنجليزية  الخدمة العسكرية الرتبة عميد  ال…

 Óxido de silicio(IV) Dunas de arena, compuestas principalmente por granos de cuarzo (dióxido de silicio). GeneralOtros nombres Sílice, Anhídrido silícicoFórmula molecular SiO2IdentificadoresNúmero CAS 7631-86-9[1]​ChEBI 30563ChEMBL CHEMBL3188292ChemSpider 22683DrugBank 11132PubChem 24261UNII ETJ7Z6XBU4KEGG C19572 InChIInChI=InChI=1S/O2Si/c1-3-2Key: VYPSYNLAJGMNEJ-UHFFFAOYSA-N Propiedades físicasApariencia translúcidoDensidad 2634 kg/m³; 2,634 g/cm³Masa molar …

أيت أورير جماعة حضرية   الاسم الرسمي أيت أورير[1](بالفرنسية: Ait Ourir)‏[1]  الإحداثيات 31°33′52″N 7°39′46″W / 31.56444444°N 7.66277778°W / 31.56444444; -7.66277778  تقسيم إداري  البلد المغرب  الجهة جهة مراكش آسفي  الإقليم إقليم الحوز الحكومة  رئيس البلدية أحمد التويزي &…

10th First Lady of India For the author, see Usha Narayanan (author). Usha NarayananNarayanan in 2000First Lady of IndiaIn role25 July 1997 – 25 July 2002PresidentKocheril R. NarayananPreceded byVimala SharmaSucceeded byDevisingh ShekhawatSecond Lady of IndiaIn role21 August 1992 – 24 July 1997Vice PresidentKocheril R. NarayananPreceded byVimala SharmaSucceeded byShreemathi Suman Personal detailsBornTint Tint1922 (1922)Yamethin, BurmaDied24 January 2008(2008-01-24) (ag…

Indian TV series or programme Perfect BrideGenreReality showCountry of originIndiaOriginal languageHindiNo. of seasons1Original releaseNetworkStarPlusRelease12 September (2009-09-12) –12 December 2009 (2009-12-12) Perfect Bride is an Indian reality show that aired on STAR Plus adapted from the American show Momma's Boys.[1] It premiered on 12 September 2009, and follows five bridegrooms as they choose their brides from a panel of eleven potential candidates.[2&#…

Turkish-American online news show host (born 1970) Cenk UygurUygur in 2016BornCenk Kadir Uygur (1970-03-21) March 21, 1970 (age 53)Istanbul, TurkeyEducationUniversity of Pennsylvania (BS)Columbia University (JD)OccupationsPolitical commentatormedia hostpoliticianPolitical partyDemocratic (since 2007)Other politicalaffiliationsIndependent (2000–2007)Republican (until 2000)[1]SpouseWendy LangChildren2RelativesHasan Piker (nephew) Uygur's voice On the intersection of mainstream media…

To all pro-Falun Gong vandals: How does vandalizing Wikipedia pages promote your cause? Only someone lacking in maturity would go about cussing. Or is it because you have nothing worthwhile to say about Falun Gong? And why hide behind an anon. IP address? Have the guts to take responsibility for your own comments! Otherwise, we can see who's really pathetic. Note: The above paragraph does not indicate whether I am pro- or anti-Falun Gong. It is merely a response to those who vandalize my page; i…

JooxBahasaInggris Tionghoa Indonesia Melayu Burma ThaiMarkasHong Kong Indonesia MalaysiaSektorMusik SiniarSloganLive Your MusicSitus webwww.joox.comPeringkat Alexa17.953 (hingga Maret 2021[update])[1]Daftar akunOpsionalStatusAktif Joox (berasal dari kata jukebox) adalah layanan penyiaran musik yang diluncurkan pada Januari 2015 oleh Tencent, yang merupakan perusahaan di balik aplikasi ponsel pesan instan WeChat. Joox tersedia dalam bentuk aplikasi ponsel seperti Android dan …

R C Ziegler and Son is a firm of monumental masons in Queensland, Australia. They built many heritage-listed war memorials in Queensland. History The firm was established in Toowoomba circa 1902 and undertook monumental masonry commissions throughout south-western Queensland. The family company moved to Bundaberg where it was operating until the mid 1980s.[1] In 2016, it is based once again in Toowoomba serving Queensland and northern New South Wales under the name RC Ziegler Monumenta…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 18.188.126.29