Share to: share facebook share twitter share wa share telegram print page

Subset sum problem

The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely .[1] The problem is known to be NP-complete. Moreover, some restricted variants of it are NP-complete too, for example:[1]

  • The variant in which all inputs are positive.
  • The variant in which inputs may be positive or negative, and . For example, given the set , the answer is yes because the subset sums to zero.
  • The variant in which all inputs are positive, and the target sum is exactly half the sum of all inputs, i.e., . This special case of SSP is known as the partition problem.

SSP can also be regarded as an optimization problem: find a subset whose sum is at most T, and subject to that, as close as possible to T. It is NP-hard, but there are several algorithms that can solve it reasonably quickly in practice.

SSP is a special case of the knapsack problem and of the multiple subset sum problem.

Computational hardness

The run-time complexity of SSP depends on two parameters:

  • n - the number of input integers. If n is a small fixed number, then an exhaustive search for the solution is practical.
  • L - the precision of the problem, stated as the number of binary place values that it takes to state the problem. If L is a small fixed number, then there are dynamic programming algorithms that can solve it exactly.

As both n and L grow large, SSP is NP-hard. The complexity of the best known algorithms is exponential in the smaller of the two parameters n and L. The problem is NP-hard even when all input integers are positive (and the target-sum T is a part of the input). This can be proved by a direct reduction from 3SAT.[2] It can also be proved by reduction from 3-dimensional matching (3DM):[3]

  • We are given an instance of 3DM, where the vertex sets are W, X, Y. Each set has n vertices. There are m edges, where each edge contains exactly one vertex from each of W, X, Y. Denote L := ceiling(log2(m+1)), so that L is larger than the number of bits required to represent the number of edges.
  • We construct an instance of SSP with m positive integers. The integers are described by their binary representation. Each input integer can be represented by 3nL bits, divided into 3n zones of L bits. Each zone corresponds to a vertex.
  • For each edge (w,x,y) in the 3DM instance, there is an integer in the SSP instance, in which exactly three bits are "1": the least-significant bits in the zones of the vertices w, x, and y. For example, if n=10 and L=3, and W=(0,...,9), X=(10,...,19), Y=(20,...,29), then the edge (0, 10, 20) is represented by the number (20+230+260).
  • The target sum T in the SSP instance is set to an integer with "1" in the least-significant bit of every zone, that is, (20+21+...+23n-1).
  • If the 3DM instance has a perfect matching, then summing the corresponding integers in the SSP instance yields exactly T.
  • Conversely, if the SSP instance has a subset with sum exactly T, then, since the zones are sufficiently large so that there are no "carries" from one zone to the next, the sum must correspond to a perfect matching in the 3DM instance.

The following variants are also known to be NP-hard:

  • The input integers can be both positive and negative, and the target-sum T = 0. This can be proved by reduction from the variant with positive integers. Denote that variant by SubsetSumPositive and the current variant by SubsetSumZero. Given an instance (S, T) of SubsetSumPositive, construct an instance of SubsetSumZero by adding a single element with value −T. Given a solution to the SubsetSumPositive instance, adding the −T yields a solution to the SubsetSumZero instance. Conversely, given a solution to the SubsetSumZero instance, it must contain the −T (since all integers in S are positive), so to get a sum of zero, it must also contain a subset of S with a sum of +T, which is a solution of the SubsetSumPositive instance.
  • The input integers are positive, and T = sum(S)/2. This can also be proved by reduction from the general variant; see partition problem.

The analogous counting problem #SSP, which asks to enumerate the number of subsets summing to the target, is #P-complete.[4]

Exponential time algorithms

There are several ways to solve SSP in time exponential in n.[5]

Inclusion–exclusion

The most naïve algorithm would be to cycle through all subsets of n numbers and, for every one of them, check if the subset sums to the right number. The running time is of order , since there are subsets and, to check each subset, we need to sum at most n elements.

The algorithm can be implemented by depth-first search of a binary tree: each level in the tree corresponds to an input number; the left branch corresponds to excluding the number from the set, and the right branch corresponds to including the number (hence the name Inclusion-Exclusion). The memory required is . The run-time can be improved by several heuristics:[5]

  • Process the input numbers in descending order.
  • If the integers included in a given node exceed the sum of the best subset found so far, the node is pruned.
  • If the integers included in a given node, plus all remaining integers, are less than the sum of the best subset found so far, the node is pruned.

Horowitz and Sahni

In 1974, Horowitz and Sahni[6] published a faster exponential-time algorithm, which runs in time , but requires much more space - . The algorithm splits arbitrarily the n elements into two sets of each. For each of these two sets, it stores a list of the sums of all possible subsets of its elements. Each of these two lists is then sorted. Using even the fastest comparison sorting algorithm, Mergesort for this step would take time . However, given a sorted list of sums for elements, the list can be expanded to two sorted lists with the introduction of a ()th element, and these two sorted lists can be merged in time . Thus, each list can be generated in sorted form in time . Given the two sorted lists, the algorithm can check if an element of the first array and an element of the second array sum up to T in time . To do that, the algorithm passes through the first array in decreasing order (starting at the largest element) and the second array in increasing order (starting at the smallest element). Whenever the sum of the current element in the first array and the current element in the second array is more than T, the algorithm moves to the next element in the first array. If it is less than T, the algorithm moves to the next element in the second array. If two elements that sum to T are found, it stops. (The sub-problem for two elements sum is known as two-sum.[7])

Schroeppel and Shamir

In 1981, Schroeppel and Shamir presented an algorithm[8] based on Horowitz and Sanhi, that requires similar runtime - , much less space - . Rather than generating and storing all subsets of n/2 elements in advance, they partition the elements into 4 sets of n/4 elements each, and generate subsets of n/2 element pairs dynamically using a min heap, which yields the above time and space complexities since this can be done in and space given 4 lists of length k.

Due to space requirements, the HS algorithm is practical for up to about 50 integers, and the SS algorithm is practical for up to 100 integers.[5]

Howgrave-Graham and Joux

In 2010, Howgrave-Graham and Joux[9] presented a probabilistic algorithm that runs faster than all previous ones - in time using space . It solves only the decision problem, cannot prove there is no solution for a given sum, and does not return the subset sum closest to T.

The techniques of Howgrave-Graham and Joux were subsequently extended[10] bringing the time complexity to . A more recent generalization[11] lowered the time complexity to .

Pseudo-polynomial time dynamic programming solutions

SSP can be solved in pseudo-polynomial time using dynamic programming. Suppose we have the following sequence of elements in an instance:

We define a state as a pair (i, s) of integers. This state represents the fact that

"there is a nonempty subset of which sums to s."

Each state (i, s) has two next states:

  • (i+1, s), implying that is not included in the subset;
  • (i+1, s+), implying that is included in the subset.

Starting from the initial state (0, 0), it is possible to use any graph search algorithm (e.g. BFS) to search the state (N, T). If the state is found, then by backtracking we can find a subset with a sum of exactly T.

The run-time of this algorithm is at most linear in the number of states. The number of states is at most N times the number of different possible sums. Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in . For example, if all input values are positive and bounded by some constant C, then B is at most N C, so the time required is .

This solution does not count as polynomial time in complexity theory because is not polynomial in the size of the problem, which is the number of bits used to represent it. This algorithm is polynomial in the values of A and B, which are exponential in their numbers of bits. However, Subset Sum encoded in unary is in P, since then the size of the encoding is linear in B-A. Hence, Subset Sum is only weakly NP-Complete.

For the case that each is positive and bounded by a fixed constant C, in 1999, Pisinger found a linear time algorithm having time complexity (note that this is for the version of the problem where the target sum is not necessarily zero, as otherwise the problem would be trivial).[12] In 2015, Koiliaris and Xu found a deterministic algorithm for the subset sum problem where T is the sum we need to find.[13] In 2017, Bringmann found a randomized time algorithm.[14]

In 2014, Curtis and Sanches found a simple recursion highly scalable in SIMD machines having time and space, where p is the number of processing elements, and is the lowest integer.[15] This is the best theoretical parallel complexity known so far.

A comparison of practical results and the solution of hard instances of the SSP is discussed by Curtis and Sanches.[16]

Polynomial time approximation algorithms

Suppose all inputs are positive. An approximation algorithm to SSP aims to find a subset of S with a sum of at most T and at least r times the optimal sum, where r is a number in (0,1) called the approximation ratio.

Simple 1/2-approximation

The following very simple algorithm has an approximation ratio of 1/2:[17]

  • Order the inputs by descending value;
  • Put the next-largest input into the subset, as long as it fits there.

When this algorithm terminates, either all inputs are in the subset (which is obviously optimal), or there is an input that does not fit. The first such input is smaller than all previous inputs that are in the subset and the sum of inputs in the subset is more than T/2 otherwise the input also is less than T/2 and it would fit in the set. Such a sum greater than T/2 is obviously more than OPT/2.

Fully-polynomial time approximation scheme

The following algorithm attains, for every , an approximation ratio of . Its run time is polynomial in n and . Recall that n is the number of inputs and T is the upper bound to the subset sum.

initialize a list L to contain one element 0.

for each i from 1 to n do
    let Ui be a list containing all elements y in L, and all sums xi + y for all y in L.
    sort Ui in ascending order
    make L empty 
    let y be the smallest element of Ui
    add y to L
    for each element z of Ui in increasing order do
        // Trim the list by eliminating numbers close to one another
        // and throw out elements greater than the target sum T.
        if y +  ε T/n < zT then
            y = z
            add z to L

return the largest element in L.

Note that without the trimming step (the inner "for each" loop), the list L would contain the sums of all subsets of inputs. The trimming step does two things:

  • It ensures that all sums remaining in L are below T, so they are feasible solutions to the subset-sum problem.
  • It ensures that the list L is "sparse", that is, the difference between each two consecutive partial-sums is at least .

These properties together guarantee that the list L contains no more than elements; therefore the run-time is polynomial in .

When the algorithm ends, if the optimal sum is in L, then it is returned and we are done. Otherwise, it must have been removed in a previous trimming step. Each trimming step introduces an additive error of at most , so n steps together introduce an error of at most . Therefore, the returned solution is at least which is at least .

The above algorithm provides an exact solution to SSP in the case that the input numbers are small (and non-negative). If any sum of the numbers can be specified with at most P bits, then solving the problem approximately with is equivalent to solving it exactly. Then, the polynomial time algorithm for approximate subset sum becomes an exact algorithm with running time polynomial in n and (i.e., exponential in P).

Kellerer, Mansini, Pferschy and Speranza[18] and Kellerer, Pferschy and Pisinger[19] present other FPTAS-s for subset sum.

See also

  • Knapsack problem – Problem in combinatorial optimization - a generalization of SSP in which each input item has both a value and a weight. The goal is to maximize the value subject to a bound on the total weight.
  • Multiple subset sum problem - a generalization of SSP in which one should choose several subsets.
  • 3SUM – Problem in computational complexity theory
  • Merkle–Hellman knapsack cryptosystem – one of the earliest public key cryptosystems invented by Ralph Merkle and Martin Hellman in 1978. The ideas behind it are simpler than those involving RSA, and it has been broken

References

  1. ^ a b Kleinberg, Jon; Tardos, Éva (2006). Algorithm Design (2nd ed.). p. 491. ISBN 0-321-37291-3.
  2. ^ Goodrich, Michael. "More NP complete and NP hard problems" (PDF). Archived (PDF) from the original on 2022-10-09.
  3. ^ Garey, Michael R.; Johnson, David S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676., Section 3.1 and problem SP1 in Appendix A.3.1.
  4. ^ Filmus, Yuval (30 January 2016). Answer to: "Is there a known, fast algorithm for counting all subsets that sum to below a certain number?". Theoretical Computer Science Stack Exchange. Note that Filmus' citation in support of the claim (Faliszewski, Piotr; Hemaspaandra, Lane (2009). "The complexity of power-index comparison". Theoretical Computer Science. Elsevier. 410: 101-107. DOI 10.1016/j.tcs.2008.09.034) does not in fact prove the claim, instead directing readers to another citation (Papadimitriou, Christos (1994). Computational Complexity. Addison-Wesley: Reading, MA. Chapter 9. ISBN 0-201-53082-1 — via the Internet Archive), which does not explicitly prove the claim either. Papadimitriou's proof that SSP is NP-complete via reduction of 3SAT does, however, generalize to a reduction from #3SAT to #SSP.
  5. ^ a b c Richard E. Korf, Ethan L. Schreiber, and Michael D. Moffitt (2014). "Optimal Sequential Multi-Way Number Partitioning" (PDF). Archived (PDF) from the original on 2022-10-09.{{cite web}}: CS1 maint: multiple names: authors list (link)
  6. ^ Horowitz, Ellis; Sahni, Sartaj (1974). "Computing partitions with applications to the knapsack problem" (PDF). Journal of the Association for Computing Machinery. 21 (2): 277–292. doi:10.1145/321812.321823. hdl:1813/5989. MR 0354006. S2CID 16866858. Archived (PDF) from the original on 2022-10-09.
  7. ^ "The Two-Sum Problem" (PDF). Archived (PDF) from the original on 2022-10-09.
  8. ^ Schroeppel, Richard; Shamir, Adi (1981-08-01). "A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete problems". SIAM Journal on Computing. 10 (3): 456–464. doi:10.1137/0210033. ISSN 0097-5397.
  9. ^ Howgrave-Graham, Nick; Joux, Antoine (2010). "New Generic Algorithms for Hard Knapsacks". In Gilbert, Henri (ed.). Advances in Cryptology – EUROCRYPT 2010. Lecture Notes in Computer Science. Vol. 6110. Berlin, Heidelberg: Springer. pp. 235–256. doi:10.1007/978-3-642-13190-5_12. ISBN 978-3-642-13190-5.
  10. ^ Becker, Anja; Coron, Jean-Sébastien; Joux, Antoine (2011). "Improved Generic Algorithms for Hard Knapsacks". In Patterson, Kenneth (ed.). Advances in Cryptology – EUROCRYPT 2011. Lecture Notes in Computer Science. Vol. 6632. Berlin, Heidelberg: Springer. pp. 364–385. doi:10.1007/978-3-642-20465-4_21. ISBN 978-3-642-20465-4.
  11. ^ Bonnetain, Xavier; Bricout, Rémi; Schrottenloher, André; Shen, Yixin (2020). "Improved Classical and Quantum Algorithms for Subset-Sum". In Moriai, Shiho; Wang, Huaxiong (eds.). Advances in Cryptology - ASIACRYPT 2020. Lecture Notes in Computer Science. Vol. 12492. Berlin, Heidelberg: Springer. pp. 633–666. doi:10.1007/978-3-030-64834-3_22. ISBN 978-3-030-64833-6.
  12. ^ Pisinger, David (1999). "Linear time algorithms for knapsack problems with bounded weights". Journal of Algorithms. 33 (1): 1–14. doi:10.1006/jagm.1999.1034. MR 1712690.
  13. ^ Koiliaris, Konstantinos; Xu, Chao (2015-07-08). "A Faster Pseudopolynomial Time Algorithm for Subset Sum". arXiv:1507.02318 [cs.DS].
  14. ^ Bringmann, Karl (2017). "A near-linear pseudopolynomial time algorithm for subset sum". In Klein, Philip N. (ed.). Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017). SIAM. pp. 1073–1084. arXiv:1610.04712. doi:10.1137/1.9781611974782.69.
  15. ^ Curtis, V. V.; Sanches, C. A. A. (January 2016). "An efficient solution to the subset-sum problem on GPU: An efficient solution to the subset-sum problem on GPU". Concurrency and Computation: Practice and Experience. 28 (1): 95–113. doi:10.1002/cpe.3636. S2CID 20927927.
  16. ^ Curtis, V. V.; Sanches, C. A. A. (July 2017). "A low-space algorithm for the subset-sum problem on GPU". Computers & Operations Research. 83: 120–124. doi:10.1016/j.cor.2017.02.006.
  17. ^ Caprara, Alberto; Kellerer, Hans; Pferschy, Ulrich (2000-02-01). "The Multiple Subset Sum Problem". SIAM Journal on Optimization. 11 (2): 308–319. doi:10.1137/S1052623498348481. ISSN 1052-6234.
  18. ^ Kellerer, Hans; Mansini, Renata; Pferschy, Ulrich; Speranza, Maria Grazia (2003-03-01). "An efficient fully polynomial approximation scheme for the Subset-Sum Problem". Journal of Computer and System Sciences. 66 (2): 349–370. doi:10.1016/S0022-0000(03)00006-0. ISSN 0022-0000.
  19. ^ Hans Kellerer; Ulrich Pferschy; David Pisinger (2004). Knapsack problems. Springer. p. 97. ISBN 9783540402862.

Further reading

Read other articles:

For a chronological order of battles, see List of military engagements during the Russian invasion of Ukraine. Some of this article's listed sources may not be reliable. Please help this article by looking for better, more reliable sources. Unreliable citations may be challenged or deleted. (April 2022) (Learn how and when to remove this template message) This is the order of battle for the Russian invasion of Ukraine. It should not be considered completely up to date nor accurate, being based o…

WWII Red Army military unit 215th Motorized Division (11 March 1941 - 19 September 1941)215th Rifle Division (May 1942 - 30 April 1955)Active1941–1956 (48th Rifle Brigade 1941–1942, 33rd Rifle Division 1955–1956)CountrySoviet UnionBranchRed Army (Soviet Army from 1946)TypeInfantryEngagementsWorld War IIDecorations  Order of the Red Banner  Order of Suvorov 2nd class  Order of Kutuzov 2nd class Battle honoursSmolenskCommandersNotablecommandersAndranik GhazaryanMilitary u…

Скупштина у Крагујевцу држана 25. јануара 1830. год коју је кнез Милош сазвао ради објаве хатишерифа од 1830. год., разликовала се од свију дотадашњих сличних зборова. Тада су први пут дошли депутати са пуномоћством, одређени готово путем формалних избора. Три или четири мала сел

Awang IshakPotret Resmi Awang Ishak sebagai Wali Kota Singkawang Periode II (2012—2017)Wali Kota Singkawang ke-1Masa jabatan17 Desember 2012 – 17 Desember 2017PresidenSusilo Bambang YudhoyonoJoko WidodoGubernurCornelisWakilAbdul MutalibPendahuluHasan KarmanPenggantiTjhai Chui MieMasa jabatan17 Desember 2002 – 17 Desember 2007Pejabat:2001—2002PresidenMegawati SoekarnoputriSusilo Bambang YudhoyonoGubernurUsman Ja'farWakilRaymundus SailanPendahuluTidak ada, Jabatan bar…

AMX-10P النوع مركبة مشاة قتالية بلد الأصل فرنسا تاريخ الاستخدام المستخدمون انظر المستخدمون الحروب حرب الخليج الأولىحرب الخليج الثانيةحرب البوسنة والهرسكالحرب الأهلية العراقية (2014–الآن) تاريخ الصنع صمم 1968[1] المصنع نكستر[2] صنع 1973–1994[3] الكمية المصنوعة 1,750[3] ال

Пйотр Міхал МйончинськийНародився 1695[1][2]Помер 1776[3][1][2]Країна  Річ ПосполитаТитул граф[d]Посада Чернігівський воєвода, каштелян хелмськийd, староста кшепіцькийd і Q66201158?Військове звання ротмістрКонфесія католицька церкваРід Мйончинські

Опис файлу Обґрунтування добропорядного використання для статті «Рятувальники Малібу (фільм)» [?] Опис Український постер до фільму Рятувальники Малібу. Джерело http://bhfilms.com.ua/#115 Автор Дистриб'ютор, видавець, або художник фільму Мета використання в якості основного з…

Tangga Batu IDesaPeta lokasi Desa Tangga Batu INegara IndonesiaProvinsiSumatera UtaraKabupatenTobaKecamatanParmaksianKode pos22384Kode Kemendagri12.12.24.2004 Luas5,39 km²Jumlah penduduk1.351 jiwa (2015)Kepadatan250,65 jiwa/km² Tangga Batu I adalah salah satu desa di Kecamatan Parmaksian, Kabupaten Toba, Provinsi Sumatera Utara, Indonesia. Pemerintahan Kepala Desa Tangga Batu I pada tahun 2020 adalah Juner Sitorus.[1] Desa Tangga Batu I terdiri dari dusun: Huta Nagodang Lumban Bin…

حرب العبيد الثالثة جزء من حروب العبيد الرومانية إيطاليا والمناطق المحيطة، 218 قبل الميلاد معلومات عامة التاريخ 73-71 قبل الميلاد الموقع إيطاليا41°06′N 14°12′E / 41.1°N 14.2°E / 41.1; 14.2  النتيجة فوز روماني حاسم المتحاربون جيش من العبيد الهاربين الجمهورية الرومانية القادة س…

Charnia Periode Ediakarium Akhir, 570–550 jtyl PreЄ Є O S D C P T J K Pg N [1] Sebuah cetakan dari holotipe Charnia masoniTaksonomi Tata namaSinonim takson Glassnerina Germs, 1973 Rangea grandis Glaessner & Wade, 1966 = Glaessnerina grandis Rangea sibirica Sokolov, 1972 = Glaessnerina sibirica lbs Rekonstruksi dari Charnia masoni di Museo delle Scienze, Trento Charnia adalah genus dari organisme mirip daun yang merupakan bagian dari Biota Ediakara, dengan alur-alur mirip dau…

Susan B. AnthonyPotret Susan B. Anthony yang dipakai dalam History of Woman SuffrageLahirSusan Anthony(1820-02-15)15 Februari 1820Adams, Massachusetts, ASMeninggal13 Maret 1906(1906-03-13) (umur 86)Rochester, New York, ASMakamMount Hope Cemetery, RochesterDikenal atasHak suara wanitahak wanitaabolisionismeTanda tangan Susan B. Anthony (lahir Susan Anthony ; 15 Februari 1820 – 13 Maret 1906) adalah seorang reformis sosial Amerika dan aktivis hak-hak perempuan yang memainkan peran pent…

У Вікіпедії є статті про інших людей із прізвищем Ніколс. Майк Ніколс Ім'я при народженні англ. Michael Igor PeschkowskyНародився 6 листопада 1931(1931-11-06)[1][2][…]Берлін, Німеччина[1]Помер 19 листопада 2014(2014-11-19)[1][3][…] (83 роки)Нью-Йорк, Нью-Йорк, США[1]інфаркт міокардаГр

Bagian dari seriKosmologi fisik Ledakan Dahsyat · Alam semesta Umur alam semesta Kronologi alam semesta Alam semesta awal Masa Planck Masa penyatuan agung Nukleosintesis Big Bang Inflasi Zaman Kegelapan Latar belakang Cosmic background radiation (CBR) Gravitational wave background (GWB) Cosmic microwave background (CMB) · Cosmic neutrino background (CNB) Cosmic infrared background (INB) Ekspansi · Masa depan Hukum Hubble · Pergeseran merah Ekspansi alam semesta Metrik FLR…

Not to be confused with St. Paul the Apostle Church (Manhattan). St. Paul's Church(2018)ReligionAffiliationRoman CatholicProvinceArchdiocese of New YorkLeadershipFr Pablo WaldmanLocationLocation113 East 117th StreetManhattan, New York CityArchitectureCompleted1834Websitestpaulchurchhive.org The Church of St. Paul is a Roman Catholic parish church in the Roman Catholic Archdiocese of New York, located in the East Harlem neighborhood of Manhattan, New York City. The sixth parish established in New…

Esquema de un navío de línea de tres puentes[nota 1]​ (siglo XVIII): 1. Pañol de municiones. 2. Santabárbara. 3. Antepañol. Cuarto donde se cargaban de pólvora los cartuchos. 4. Tapabalazo. Vía de agua tapada con tablas de madera y planchas de plomo. 5. Tiro doble. Requerido para quebrar el casco del barco enemigo. 6. Cañón con cureña y aparejos. 7. Zona de abordaje. La construcción naval española del siglo XVIII se caracteriza por siete etapas de transformación,[2]&…

2015 film by Vikas Bahl For the 1974 release, see Shaandaar (1974 film). For the 1990 release, see Shandaar. ShaandaarTheatrical release posterDirected byVikas BahlWritten byAnvita Dutt GuptanStory byVikas BahlChaitally ParmarProduced byAnurag KashyapVikramaditya MotwaneKaran JoharMadhu MantenaStarringShahid KapoorAlia BhattCinematographyAnil MehtaEdited bySanchari Das MollickMusic byAmit Trivedi Shekhar Ravjiani (background score)ProductioncompaniesPhantom FilmsDharma ProductionsDistributed byF…

Paprika dengan Espelette AOC Kantor pusat Institut national de l'origine et de la qualité di Paris Ayam Bresse Appellation d'origine contrôlée (AOC; pengucapan bahasa Prancis: [apɛlasjɔ̃ dɔʁiʒin kɔ̃tʁole]; wewenang penunjukkan asal) merupakan sertifikasi Prancis yang diberikan kepada indikasi geografis Prancis tertentu untuk minuman anggur, keju, mentega, dan produk pertanian lainnya, semuanya berada di bawah naungan biro pemerintah Institut national des appellations d'origine, …

North American collegiate fraternity This article is about the social fraternity. For the Illinois College local literary society, see Sigma Phi Epsilon Literary Society. Sigma Phi EpsilonΣΦΕFoundedNovember 1, 1901; 122 years ago (1901-11-01)Richmond College (Richmond, Virginia, U.S.)TypeSocialAffiliationNIC (former)ScopeNationalMission statementBuilding Balanced MenColors  Red  Purple  GoldFlagFlowerViolet and Dark Red RosePhilanthropyBig Brothers Big Sisters…

2004 studio album by Benny GolsonTerminal 1Studio album by Benny GolsonReleasedJune 22, 2004RecordedFebruary 24, 25 & 26, 2004Studio39th Street Studios, New York, NYGenreJazzLength69:09LabelConcordCCD-2259-25ProducerJohn BurkBenny Golson chronology One Day, Forever(2001) Terminal 1(2004) New Time, New 'Tet(2009) Terminal 1 is an album by saxophonist/composer Benny Golson that was recorded in 2004 and released by the Concord label.[1][2][3] Reception Profession…

Technique to track the movement of objects using X-rays X-ray motion analysis is a technique used to track the movement of objects using X-rays. This is done by placing the subject to be imaged in the center of the X-ray beam and recording the motion using an image intensifier and a high-speed camera, allowing for high quality videos sampled many times per second. Depending on the settings of the X-rays, this technique can visualize specific structures in an object, such as bones or cartilage. X…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.138.34.89