Since an electron and a hole have opposite charges their mutual Coulomb interaction is attractive. The corresponding Schrödinger equation, in relative coordinate , has the same form as the hydrogen atom:
In a solid, the scaling of and the wavefunction size are orders of magnitude different from the hydrogen problem because the relative permittivity is roughly ten and the reduced mass in a solid is much smaller than the electron rest mass, i.e., . As a result, the exciton radius can be large while the exciton binding energy is small, typically few to hundreds of meV, depending on material, compared to eV for the hydrogen problem.[1][2]
The Fourier transformed version of the presented Hamiltonian can be written as
where is the electronic wave vector, is the kinetic energy and , are the Fourier transforms of , , respectively. The Coulomb sums follows from the convolution theorem and the -representation is useful when introducing the generalized Wannier equation.
Generalized Wannier equation
The Wannier equation can be generalized by including the presence of many electrons and holes in the excited system. One can start from the general theory of either optical excitations or light emission in semiconductors that can be systematically described using the semiconductor Bloch equations (SBE) or the semiconductor luminescence equations (SLE), respectively.[1][3][4] The homogeneous parts of these equations produce the Wannier equation at the low-density limit. Therefore, the homogeneous parts of the SBE and SLE provide a physically meaningful way to identify excitons at arbitrary excitation levels. The resulting generalized Wannier equation is
where the kinetic energy becomes renormalized
by the electron and hole occupations and , respectively. These also modify the Coulomb interaction into
where weakens the Coulomb interaction via the so-called phase-space filling factor that stems from the Pauli exclusion principle preventing multiple excitations of fermions. Due to the phase-space filling factor, the Coulomb attraction becomes repulsive for excitations levels . At this regime, the generalized Wannier equation produces only unbound solutions which follow from the excitonic Mott transition from bound to ionized electron–hole pairs.
Once electron–hole densities exist, the generalized Wannier equation is not Hermitian anymore. As a result, the eigenvalue problem has both left- and right-handed eigenstates and , respectively. They are connected via the phase-space filling factor, i.e. . The left- and right-handed eigenstates have the same eigen value (that is real valued for the form shown) and they form a complete set of orthogonal solutions since
.
The Wannier equations can also be generalized to include scattering and screening effects that appear due to two-particle correlations within the SBE. This extension also produces left- and right-handed eigenstate, but their connection is more complicated[4] than presented above. Additionally, becomes complex valued and the imaginary part of defines the lifetime of the resonance .
Physically, the generalized Wannier equation describes how the presence of other electron–hole pairs modifies the binding of one effective pair. As main consequences, an excitation tends to weaken the Coulomb interaction and renormalize the single-particle energies in the simplest form. Once also correlation effects are included, one additionally observes the screening of the Coulomb interaction, excitation-induced dephasing, and excitation-induced energy shifts. All these aspects are important when semiconductor experiments are explained in detail.
Applications
Due to the analogy with the hydrogen problem, the zero-density eigenstates are known analytically for any bulk semiconductor when excitations close to the bottom of the electronic bands are studied.[5] In nanostructured[6] materials, such as quantum wells, quantum wires, and quantum dots, the Coulomb-matrix element strongly deviates from the ideal two- and three-dimensional systems due to finite quantum confinement of electronic states. Hence, one cannot solve the zero-density Wannier equation analytically for those situations, but needs to resort to numerical eigenvalue solvers. In general, only numerical solutions are possible for all semiconductor cases when exciton states are solved within an excited matter. Further examples are shown in the context of the Elliott formula.
^ abHaug, H.; Koch, S. W. (2009). Quantum Theory of the Optical and Electronic Properties of Semiconductors (5th ed.). World Scientific. p. 216. ISBN9812838848.
^Klingshirn, C. F. (2006). Semiconductor Optics. Springer. ISBN978-3540383451.
^Kira, M.; Koch, S.W. (2006). "Many-body correlations and excitonic effects in semiconductor spectroscopy". Progress in Quantum Electronics30 (5): 155–296. doi:10.1016/j.pquantelec.2006.12.002.
^ abKira, M.; Koch, S. W. (2011). Semiconductor Quantum Optics. Cambridge University Press. ISBN978-0521875097.