Vorticity equation

The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:

where D/Dt is the material derivative operator, u is the flow velocity, ρ is the local fluid density, p is the local pressure, τ is the viscous stress tensor and B represents the sum of the external body forces. The first source term on the right hand side represents vortex stretching.

The equation is valid in the absence of any concentrated torques and line forces for a compressible, Newtonian fluid. In the case of incompressible flow (i.e., low Mach number) and isotropic fluids, with conservative body forces, the equation simplifies to the vorticity transport equation:

where ν is the kinematic viscosity and is the Laplace operator. Under the further assumption of two-dimensional flow, the equation simplifies to:

Physical interpretation

  • The term Dω/Dt on the left-hand side is the material derivative of the vorticity vector ω. It describes the rate of change of vorticity of the moving fluid particle. This change can be attributed to unsteadiness in the flow (ω/t, the unsteady term) or due to the motion of the fluid particle as it moves from one point to another ((u ∙ ∇)ω, the convection term).
  • The term (ω ∙ ∇) u on the right-hand side describes the stretching or tilting of vorticity due to the flow velocity gradients. Note that (ω ∙ ∇) u is a vector quantity, as ω ∙ ∇ is a scalar differential operator, while u is a nine-element tensor quantity.
  • The term ω(∇ ∙ u) describes stretching of vorticity due to flow compressibility. It follows from the Navier-Stokes equation for continuity, namely where v = 1/ρ is the specific volume of the fluid element. One can think of ∇ ∙ u as a measure of flow compressibility. Sometimes the negative sign is included in the term.
  • The term 1/ρ2ρ × ∇p is the baroclinic term. It accounts for the changes in the vorticity due to the intersection of density and pressure surfaces.
  • The term ∇ × (∇ ∙ τ/ρ), accounts for the diffusion of vorticity due to the viscous effects.
  • The term ∇ × B provides for changes due to external body forces. These are forces that are spread over a three-dimensional region of the fluid, such as gravity or electromagnetic forces. (As opposed to forces that act only over a surface (like drag on a wall) or a line (like surface tension around a meniscus).

Simplifications

  • In case of conservative body forces, ∇ × B = 0.
  • For a barotropic fluid, ρ × ∇p = 0. This is also true for a constant density fluid (including incompressible fluid) where ρ = 0. Note that this is not the same as an incompressible flow, for which the barotropic term cannot be neglected.
    • This note seems to be talking about the fact that conservation of momentum says and there's a difference between assuming that ρ=constant (the 'incompressible fluid' option, above) and that (the 'incompressible flow' option, above). With the first assumption, conservation of momentum implies (for non-zero density) that ; whereas the second assumption doesn't necessary imply that ρ is constant. This second assumption only strictly requires that the time rate of change of the density is compensated by the gradient of the density, as in:. You can make sense of this by considering the ideal gas law p = ρRT (which is valid if the Reynolds number is large enough that viscous friction becomes unimportant.) Then, even for an adiabatic, chemically-homogenous fluid, the density can vary when the pressure changes, e.g. with Bernoulli.
  • For inviscid fluids, the viscosity tensor τ is zero.

Thus for an inviscid, barotropic fluid with conservative body forces, the vorticity equation simplifies to

Alternately, in case of incompressible, inviscid fluid with conservative body forces,

[1]

For a brief review of additional cases and simplifications, see also.[2] For the vorticity equation in turbulence theory, in context of the flows in oceans and atmosphere, refer to.[3]

Derivation

The vorticity equation can be derived from the Navier–Stokes equation for the conservation of angular momentum. In the absence of any concentrated torques and line forces, one obtains:

Now, vorticity is defined as the curl of the flow velocity vector; taking the curl of momentum equation yields the desired equation. The following identities are useful in derivation of the equation:

where is any scalar field.

Tensor notation

The vorticity equation can be expressed in tensor notation using Einstein's summation convention and the Levi-Civita symbol eijk:

In specific sciences

Atmospheric sciences

In the atmospheric sciences, the vorticity equation can be stated in terms of the absolute vorticity of air with respect to an inertial frame, or of the vorticity with respect to the rotation of the Earth. The absolute version is

Here, η is the polar (z) component of the vorticity, ρ is the atmospheric density, u, v, and w are the components of wind velocity, and h is the 2-dimensional (i.e. horizontal-component-only) del.

See also

References

  1. ^ Fetter, Alexander L.; Walecka, John D. (2003). Theoretical Mechanics of Particles and Continua (1st ed.). Dover Publications. p. 351. ISBN 978-0-486-43261-8.
  2. ^ Burr, K. P. "Marine Hydrodynamics, Lecture 9" (PDF). MIT Lectures.
  3. ^ Salmon, Richard L. "Lectures on Geophysical Fluid Dynamics, Chapter 4" (PDF). Oxford University Press; 1 edition (February 26, 1998).

Further reading

Read other articles:

Indonesian actress, model, and politician (1940–2022) Mieke WijayaWijaya in c. 1960BornMiecke Marie De Rijder(1940-03-17)17 March 1940Bandung, Dutch East IndiesDied3 May 2022(2022-05-03) (aged 82)Jakarta, IndonesiaResting placeTanah Kusir Cemetery, Kebayoran Lama, JakartaNationalityIndonesianOccupationsActressmodelSpouse Dicky Zulkarnaen ​ ​(m. 1963; died 1995)​Children4, including Nia Zulkarnaen Mieke Wijaya (born Miecke Marie De R...

 

Panagiotis Danglis was a leader of the Greek revolutionary army during the Greek War of Independence (1821-1830). He was born in Souli and was the son of Gogas Danglis. During the period of the Revolution, he was chieftain of Souli (1820–1822). He died in 1829 in Nafpaktos.[1] References ^ Δαγκλής, Γιώτης (Παναγιώτης) (Σούλι, 1787 - Ναύπακτος, 1829) - Εκδοτική Αθηνών Α.Ε. www.greekencyclopedia.com. Retrieved 20 December 2022. vte...

 

Restaurant in Paris, FranceCafé des 2 MoulinsRestaurant informationStreet address15, rue LepicCityParisPostal/ZIP Code75018CountryFranceCoordinates48°53′5.75″N 2°20′1″E / 48.8849306°N 2.33361°E / 48.8849306; 2.33361 Inside the Café The Café des 2 Moulins (French for Café of the Two Windmills) is a café in the Montmartre area of Paris, located at the junction of Rue Lepic and Rue Cauchois (the precise address is 15, rue Lepic, 75018 Paris). It takes its...

2018 television miniseries Escape at DannemoraGenreDramaThrillerCreated byBrett JohnsonMichael TolkinDirected byBen StillerStarring Benicio del Toro Patricia Arquette Paul Dano Bonnie Hunt Eric Lange David Morse ComposerEdward ShearmurCountry of originUnited StatesOriginal languageEnglishNo. of episodes7 (list of episodes)ProductionExecutive producers Ben Stiller Brett Johnson Michael Tolkin Bryan Zuriff Michael De Luca Nicky Weinstock Bill Carraro CinematographyJessica Lee GagnéRunning time...

 

Questa voce sull'argomento contee dell'Illinois è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Contea di MadisonconteaLocalizzazioneStato Stati Uniti Stato federato Illinois AmministrazioneCapoluogoEdwardsville Data di istituzione14 settembre 1812 TerritorioCoordinatedel capoluogo38°48′42″N 89°57′17″W / 38.811667°N 89.954722°W38.811667; -89.954722 (Contea di Madison)Coordinate: 38°48′42″N 89°57′17″W&#...

 

Cet article est une ébauche concernant l’informatique et une entreprise. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. LSI Logic Création 1981 Fondateurs Wilfred Corrigan (en) Action NASDAQ Siège social Milpitas (Californie) Activité Industrie des semi-conducteurs Société mère Avago Technologies (depuis 2014) Effectif 4 300 (en 2005) Site web www.lsi.com Chiffre d'affaires 1,9 milliard de $ (2005 modi...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

Gallic-Aquitani tribe Aquitani tribes at both sides of the Pyrenees. The Sotiates were a Gallic-Aquitani tribe dwelling in the region surrounding the modern town of Sos (Lot-et-Garonne) during the Iron Age and the Roman period. They were subjugated in 56 BC by the Roman forces of Caesar's legatus P. Licinius Crassus. Name The campaign of Crassus in 56 BC.They are mentioned as Sotiates (var. sontiates, sociates) by Caesar (mid-1st c. BC),[1] and as Sottiates by Pliny (1st c. AD).[2...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

縄文時代の柱穴遺構(青森県三内丸山遺跡の六本柱建物跡) 遺構(いこう)とは、過去のある時代に人類により造られた構造物(建築物や土木構造物)が後世に残された状態、言い換えれば過去人類の活動痕跡のうち、不動産的な事物を指す用語である。現在まで地表上に残存しているもののほか、かつて存在した建造物の残骸ないしその痕跡が、地中に埋没した状態�...

 

Teori dawai Objek fundamental Dawai Bran Bran-D Teori perturbatif Bosonik Superstring Tipe I Tipe II (IIA / IIB) Heterotik (SO(32) · E8×E8) Hasil non-perturbatif Dualitas-S Dualitas-T Dualitas-U Teori-M Korespondensi AdS/CFT Fenomologi Fenomenologi Kosmologi Lanskap Matematika Simetri cermin Monstrous moonshine Konsep terkait Teori bidang konformal Prinsip holografik Teori Kaluza–Klein Gravitasi kuantum Gravitasi super Multiverse Supersimetri Teori segala sesuatu Teori dawai...

 

American action crime drama television series starring Telly Savalas For other uses, see Kojak (disambiguation). KojakTitle logo, 1973–1974GenreCrime dramaCreated byAbby Mann(suggested by the book Justice in the Back Room, written by Selwyn Raab)Starring Telly Savalas Dan Frazer Kevin Dobson George Savalas Mark Russell Vince Conti Country of originUnited StatesOriginal languageEnglishNo. of seasons5No. of episodes118 (list of episodes)ProductionExecutive producersAbby MannJames Duff McAdams...

كرونة دنماركيةdansk kroneمعلومات عامةالبلد دانمارك، جزر فارو، غرينلاندتاريخ الإصدار 1979رمز العملة krرمز الأيزو 4217 DKKالمصرف المركزي مصرف الدانمارك الوطنيسعر الصرف 0٫14216 دولار أمريكي[1] (29 نوفمبر 2016)0٫13404 يورو[2] (18 سبتمبر 2018) تعديل - تعديل مصدري - تعديل ويكي بيانات كرونة دنما�...

 

The following highways are numbered 3E: United States Georgia State Route 3E (Atlanta–Marietta) (former) Georgia State Route 3E (Thomaston) (former) New York State Route 3E (former) Oklahoma State Highway 3E Secondary State Highway 3E (Washington) (former) vteList of highways numbered ...0–9 0 1 1A 1B 1D 1X 2 2A 2N 3 3A 3B 3C 3E 3G 4 4A 5 5A 5B 6 6A 6N 7 7A 7B 7C 8 9 9A 9B 9E 9W 10–16 10 10A 10N 11 11A 11B 11C 12 12A 12B 12C 12D 12E 12F 13 13A 14 14A 15 15A 16 16A 17–22 17 17A 17B 17...

 

Liste der Musikjahre 1967 | Musikjahr 1969 | 1970 | 1971 | 1972 | 1973 | ► | ►► Weitere Ereignisse · Country-Musik Musikjahr 1969 Von 15. bis 18. August 1969 findet in Bethel im Bundesstaat New York das dreitägige Woodstock-Festival statt. Vor geschätzten 400.000 Besuchern treten 32 Bands und Solokünstler der Musikrichtungen Folk, Rock, Psychedelic Rock, Blues und Country auf, darunter Stars wie Jimi Hendrix, Janis Joplin und The Who. Dieser Artik...

Earliest known European partial book leaf, printed using movable type Fragment of the Sibyllenbuch The Sibyllenbuch fragment is a partial book leaf which may be the earliest surviving remnant of any European book that was printed using movable type. The Sibyllenbuch, or Book of the Sibyls, was a medieval poem which held prophecies concerning the fate of the Holy Roman Empire. The British Library’s on-line Incunabula Short Title Catalogue dates the Sibyllenbuch fragment to about 1452–53, m...

 

Arthur BeauchesneCMG, QC, FRSCClerk of the House of CommonsIn office1925–1949Preceded byWilliam Barton NorthrupSucceeded byLéon Raymond Personal detailsBorn(1876-06-15)June 15, 1876Carleton, Quebec, CanadaDiedApril 7, 1959(1959-04-07) (aged 82)Ottawa, Ontario, CanadaPolitical partyConservativeAlma materSt. Joseph's College Arthur Beauchesne CMG QC FRSC (June 15, 1876 – April 7, 1959) was a Canadian civil servant who was Clerk of the House of Commons from ...

 

Australian politician This article is about the Australian politician. For the Irish author, see Muiris Ó Súilleabháin. The HonorableMaurice O'SullivanMinister for HealthIn office30 June 1950 – 15 March 1956Preceded byGus KellySucceeded byBill SheahanMinister for TransportIn office16 May 1941 – 30 June 1950Preceded byMichael BruxnerSucceeded byBill SheahanMember of the New South Wales Parliamentfor WoollahraIn office8 October 1927 – 18 September 1930Precede...

Cerro Maggiorecomune Cerro Maggiore – VedutaPiazza Santi Cornelio e Cipriano LocalizzazioneStato Italia Regione Lombardia Città metropolitana Milano AmministrazioneSindacoGiuseppina Nuccia Berra (centro-destra) dal 10-6-2018 (2º mandato dal 15-5-2023) TerritorioCoordinate45°36′N 8°57′E45°36′N, 8°57′E (Cerro Maggiore) Altitudine205 m s.l.m. Superficie10,12 km² Abitanti14 938[1] (31-12-2021) Densità1 476,09 ab...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: ジョルジュ・クロード – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2020年12月) 実験装置を前にしたクロード(1926�...