In modern psychology, vigilance, also termed sustained concentration, is defined as the ability to maintain concentrated attention over prolonged periods of time.[1] During this time, the person attempts to detect the appearance of a particular target stimulus. The individual watches for a signal stimulus that may occur at an unknown time.[2]
The study of vigilance has expanded since the 1940s mainly due to the increased interaction of people with machines for applications involving monitoring and detection of rare events and weak signals. Such applications include air traffic control, inspection and quality control, automated navigation, military and border surveillance, and lifeguarding.[citation needed]
Origins of research
The systematic study of vigilance was initiated by Norman Mackworth during World War II. Mackworth authored "The breakdown of vigilance during prolonged visual search" in 1948 and this paper is the seminal publication on vigilance.[3] Mackworth's 1948 study investigated the tendency of radar and sonar operators to miss rare irregular event detections near the end of their watch. Mackworth simulated rare irregular events on a radar display by having the test participants watch an unmarked clock face over a 2-hour period. A single clock hand moved in small equal increments around the clock face, with the exception of occasional larger jumps. This device became known as the Mackworth Clock. Participants were tasked to report when they detected the larger jumps. Mackworth's results indicated a decline in signal detection over time, known as a vigilance decrement. The participants' event detection declined between 10 and 15 percent in the first 30 minutes and then continued to decline more gradually for the remaining 90 minutes. Mackworth's method became known as the "Clock Test" and this method has been employed in subsequent investigations.
Vigilance decrement
Vigilance decrement is defined as "deterioration in the ability to remain vigilant for critical signals with time, as indicated by a decline in the rate of the correct detection of signals".[4] Vigilance decrement is most commonly associated with monitoring to detect a weak target signal. Detection performance loss is less likely to occur in cases where the target signal exhibits a high saliency. For example, a radar operator would be unlikely to miss a rare target at the end of a watch if it were a large bright flashing signal, but might miss a small dim signal.
Under most conditions, vigilance decrement becomes significant within the first 15 minutes of attention,[5] but a decline in detection performance can occur more quickly if the task demand conditions are high.[6] This occurs in both experienced and novice task performers.[7] Vigilance had traditionally been associated with low cognitive demand and vigilance decrement with a decline in arousal pursuant to the low cognitive demand,[8] but later studies indicated that vigilance is hard work, requiring the allocation of significant cognitive resources, and inducing significant levels of stress.[9]
Vigilance decrement and Signal Detection Theory
Green and Swets[10] formulated the Signal Detection Theory, or SDT, in 1966 to characterize detection task performance sensitivity while accounting for both the observer's perceptual ability and willingness to respond. SDT assumes an active observer making perceptual judgments as conditions of uncertainty vary. A decision maker can vary their response bias, characterized by Beta, to allow more or less correct detections (hits), but at the respective cost of more or less false alarms. This is termed a criterion shift. The degree to which the observer tolerates false alarms to achieve a higher rate of detection is termed the bias. Bias represents a strategy to minimize the consequences of missed targets and false alarms. As an example, the lookout during a bank robbery must set a threshold for how "cop-like" an approaching individual or vehicle may be. Failing to detect the "cop" in a timely fashion may result in jail time, but a false alarm will result in a lost opportunity to steal money. In order to produce a bias-free measure, d' is calculated by measuring the distance between the means of the signal and non-signals (noise) and scaling by the standard deviation of the noise. Mathematically, this can be accomplished by subtracting the z-score of the hit rate from the z-score of the false alarm rate. Application of SDT to the study of vigilance indicates that in most, but not all cases, vigilance decrement is not the result of a reduction in sensitivity over time.[11] In most cases a reduction of detections is accompanied by a commensurate reduction in false alarms, such that d' is relatively unchanged.
Vigilance Taxonomy: discrimination type and event rate
Mental workload, or cognitive load, based on task differences can significantly affect the degree of vigilance decrement. In 1977, Parasuraman and Davies investigated the effect of two task difference variables on d', and proposed the existence of a vigilance taxonomy based on discrimination type and event rate. Parasuraman and Davies employed discrimination tasks which were either successive or simultaneous, and presented both at high and low event rates. Successive discrimination tasks where critical information must be retained in working memory generate a greater mental workload than simultaneous comparison tasks. Their results indicate the type of discrimination and the rate at which discriminable events occur interact to affect sustained attention. Successive discrimination tasks indicate a greater degree of vigilance decrement than simultaneous discriminations, such as comparisons, but only when event rates are relatively high. For detection tasks, empirical evidence suggests that an event rate at or above 24 events per minute significantly reduces sensitivity. Further investigation has indicated that when the discrimination task is difficult, a decrement can occur when the mental workload is low, as with simultaneous comparisons, at both high and low event rates.[12][13]
The effect of event rate on monitoring task performance can be affected by the addition of non-target salient objects at varying frequencies. Clock test research conducted in the late 1950s and 1960s indicates that an increase in event rate for rare irregular low salience signals reduced the vigilance decrement. When non-target "artificial" signals similar to target signals were introduced, the vigilance decrement was also reduced. When the "artificial" signal differed significantly from the target signal, no performance improvement was measured.[14]
Other dimensions beyond event rate and discrimination task difficulty affect the performance of vigilance tasks and are factors in the Vigilance Taxonomy. These include but are not limited to: sensory modality, or combinations of sensory modalities; source complexity; signal duration; signal intensity; multiple signal sources; discrete versus continuous events; intermittent versus continuous attention requirement; observer skill level; and stimulation value.[15]
Measuring mental workload during vigilance tasks
Initial Vigilance Taxonomy studies relied on assumptions regarding the mental workload associated with discrimination tasks, rather than a direct quantification of that workload. Successive discriminations, for example, were assumed to impose a greater workload than simultaneous discriminations. Beginning in the late 1990s, neuroimaging techniques such as positron emission tomography (PET), functional magnetic resonance imaging (fMRI) and Transcranial Doppler sonography (TCD) have been employed to independently assess brain activation and mental workload during vigilance experiments. These neuroimaging techniques estimate brain activation by measuring the blood flow (fMRI and TCD) or glucose metabolism (PET) associated with specific brain regions. Research employing these techniques has linked increases in mental workload and allocation of attentional resources with increased activity in the prefrontal cortex. Studies employing PET, fMRI and TCD indicate a decline in activity in the prefrontal cortex correlates with vigilance decrement. Neuroimaging studies also indicate that the control of vigilance may reside in the right cerebral hemisphere in a variety of brain regions.[16]
Associated brain regions
Reductions in arousal generally correspond to reductions in vigilance. Arousal is defined as a component of vigilance, though it is not, as one may believe, the sole source of the main effect of the vigilance decrement.[17]
As such, subcortical brain regions associated with arousal play a critical role in the performance of vigilance tasks. Because the amygdala plays an important role in the recognition of emotional stimuli, it appears to be an important brain structure in the regulation of vigilance.[18]
Several cortical brain regions are associated with attention and vigilance. These include the right frontal, inferior parietal, prefrontal, superior temporal cortices and cingulate gyrus. In the frontal lobe, fMRI and TCD data indicate that brain activation increases during vigilance tasks with greater activation in the right hemisphere. Lesion and split brain studies indicate better right-brain performance on vigilance tasks, indicating an important role for the right frontal cortex in vigilance tasks.[21] Activity in the LC noradrenergic system is associated with the alert waking state in animals through the release of noradrenaline. Chemically blocking the release of noradrenaline induces drowsiness and lapses in attention associated with a vigilance decrement. The dorsolateral prefrontal cortex exhibits a higher level of activation than other significantly active areas, indicating a key role in vigilance.
The cingulate gyrus differs from other brain regions associated with vigilance in that it exhibits less activation during vigilance tasks. The role of the cingulate gyrus in vigilance is unclear, but its proximity and connections to the corpus callosum, which regulates interhemispheric activity, may be significant. Reduced activation in the cingulate gyrus may be a by-product of asymmetrical frontal lobe activation initiated in the corpus callosum.[22]
Stress
Stressful activities involve continuous application of extensive cognitive resources. If the vigilance decrement were the result of less brain activity rather than more, vigilance tasks could not be expected to be stressful. High levels of epinephrine and norepinephrine are correlated with continuous extensive mental workloads, making these compounds good chemical indicators of stress levels. Subjects performing vigilance tasks exhibit elevated levels of epinephrine and norepinephrine, consistent with high stress levels and indicative of a significant mental workload.[23] Vigilance tasks may therefore be assumed to be stressful, hard mental work.
Individual differences in performance
Large individual differences in monitoring task performance have been reported in a number of vigilance studies. For a given task, however, the vigilance decrement between subjects is generally consistent over time, such that individuals exhibiting relatively higher levels of performance for a given task maintain that level of performance over time.[24] For different tasks, however, individual performance differences are not consistent[25] for any one individual may not correlate well from one task to another. An individual exhibiting no significant decrement while performing a counting monitoring task may exhibit a significant decrement during a clock test. Relative performance between subjects may also vary based on the nature of the task.[26] For example, subjects whose task performance is well correlated for a successive task may exhibit a poor performance correlation for a simultaneous task. Conversely, subjects performing similar monitoring tasks, such as radar versus sonar target detection, can be expected to exhibit similar patterns of task performance.
Levine et al. propose that individual differences in task performance may be influenced by task demands. For example, some tasks may require rapid comparisons or "perceptual speed", while others may require "flexibility of closure", such as detection of some predefined object within a cluttered scene.[27] Linking task performance differences to task demands is consistent with the Vigilance Taxonomy proposed by Parasuraman and Davies described above, and also supports the hypothesis that vigilance requires mental work, rather than being a passive activity.
Reducing the vigilance decrement with amphetamines
Considerable research has been devoted to the reduction of the vigilance decrement. As noted above, the addition of non-target signals can improve task performance over time if the signals are similar to the target signals. Additionally, practice, performance feedback, amphetamines and rest are believed to moderate temporal performance decline without reducing sensitivity.[28]
Beginning in the mid-1940s research was conducted to determine whether amphetamines could reduce or counteract the vigilance decrement.[29][30] In 1965, Jane Mackworth conducted clock test experiments in which half of 56 participants were given a strong amphetamine and half were given a placebo.[31] Mackworth also provided false feedback and feedback in separate trials. Mackworth analyzed detection and false alarm rates to determine d', the measure of sensitivity. Participants dosed with amphetamine exhibited no increased sensitivity but did exhibit a highly significant reduction in vigilance decrement. In feedback trials, sensitivity increased while the performance decline was significantly reduced. In trials where both amphetamine and feedback were given, sensitivity was increased and there was no significant vigilance decrement.
Practice and sustained attention
Training and practice significantly reduce the vigilance decrement, reduce the false alarm rate, and may improve sensitivity for many sustained attention tasks. Changes in strategy or bias may improve task performance. Improvements based on such a criterion shift would be expected to occur early in the training process.[32] Experiments involving both audio and visual stimuli indicate the expected training performance improvement within the first five to ten hours of practice or less.[33][34][35]
Training improvements may also occur due to the reduced mental workload associated with task automaticity. In pilotage and airport security screening experiments, trained or expert subjects exhibit better detection of low salience targets, a reduction in false alarms, improved sensitivity, and a significantly reduced vigilance decrement. In some cases the vigilance decrement was eliminated or not apparent.[36][37][38]
Aging
Vigilance research conducted with subjects across a range of ages conflict regarding the ability to maintain alertness and sustained attention with age. In 1991, Parasuraman and Giambra reported a trend towards lower detection rates and higher false alarm rates with age when comparing groups between 19 and 27, 40 and 55, and 70 and 80 years old.[39] Deaton and Parasuraman reported in 1993 that beyond the age of 40 years, a trend towards lower detection rates and higher false alarm rates occurs in both cognitive tasks and sensory tasks, with higher and lower mental workloads respectively.[40] Berardi, Parasuraman and Haxby reported no differences in 2001 in the overall levels of vigilance and the ability to sustain attention over time for when comparing middle aged (over 40) and younger subjects.[41] Age dependent differences in cognitive tasks may differ with task type and workload, and some differences in detection and false alarms may be due to the reduction in the sensitivity of sensory organs.
Lack of habituation
Early theories of vigilance explained the reduction of electrophysiological activity over time associated with the vigilance decrement as a result of neural habituation.[42] Habituation is the decrease in neural responsivity due to repeated stimulation. Under passive conditions, when no task is performed, participants exhibit attenuated N100 Event Related Potentials (ERP) that indicate neural habituation, and it was assumed that habituation was also responsible for the vigilance decrement. More recent ERP studies indicate that when performance declines during a vigilance task, N100 amplitude was not diminished. These results indicate that vigilance decrement is not the result of boredom or a reduction in neurological sensitivity.[43][44]
^Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance requires hard mental work and is stressful. Human factors, 50(3), 433-441.
^Sternberg, Robert (2009). Cognitive Psychology. Belmont: CA: Wadworth Cengage Learning. p. 142.
^Mackworth, N.H. (1948). The breakdown of vigilance during prolonged visual search, Quarterly Journal of Experimental Psychology, 1, 6-21.
^Parasuraman, R. (1986). Vigilance, Monitoring and Search In J.R. Boff, L. Kaufmann & J.P. Thomas (Eds.) Handbook of Human Perception and Performance, Vol.2, Cognitive Processes and Performance (pp 41–1 - 41-49). New York, Wiley.
^Teichner, W.H. (1974). The detection of a simple visual signal as a function of time on watch. Human Factors 16, 339-353.
^Helton et al. (2007). The abbreviated vigilance task and cerebral hemodynamics. Journal of Clinical and Experimental Neuropsychology, 29, 549-552.
^Mackie, R.R. (1984). Research relevance and the information glut. Human Factors Review, (pp 1–11), Santa Monica, CA: Human Factors Society.
^Frankmann, J.P. & Adams, J.A. (1962). Theories of Vigilance. Psychological Bulletin, 59, 257-272.
^Parasuraman, R. & Davies, D.R. (1977). A taxonomic analysis of vigilance. In R.R. Mackie, (ed.) Vigilance: Theory, operational performance and physiological correlates, (pp 559–574) New York: Plenum.
^Green, D.M. & Swets, J.A. (1966) Signal Detection Theory and Psychophysics. New York: Wiley
^Broadbent, D.E. (1971) Decision and Stress. New York: Academic Press.
^Williams, P.S. (1986). Processing demands, training and the vigilance decrement. Human Factors, 28. 567-579.
^Mackworth, Jane F. (1963) The Effect of Intermittent Signal Probability on Vigilance. Canadian Journal of Psychology, 17(1). 82-89
^Parasuraman, R. & Davies, D. (1977) A taxonomic analysis of vigilance performance. In R. Mackie (ed.) Vigilance: Theory, operational performance and physiological correlates. Plenum Press.
^Parasuraman, R. & Caggiano, G. (2005). Neural and genetic assays of mental workload. In D. McBride and D. Schmorrow (Ed.) Quantifying Human Information Processing (pp 123–155). Lanham, Maryland: Rowman and Littlefield.
^Moruzzi, G. and Magoun, H.W. (1949) Brain stem reticular formation and activation of the EEG. EEG Clinical Neurophysiology I: 455-473
^Sternberg, Robert (2009). Cognitive Psychology. Belmont, CA: Wadsworth, Cengage Learning. p. 145.
^Parasuraman, R., Warm, J. & See, J. (1998) Brain Systems of Vigilance in The Attentive Brain R. Parasuraman (Ed.) pp. 221–256. Cambridge MA: MIT Press
^Moore, H., Sarter, M. & Bruno, J.P. (1993) Bidirectional modulation of stimulated cortical acetylcholine release by benzodiazepine receptor ligands. Brain Res. 596: 17-29
^Shaw, T.H., Warm, J.S., Finomore, V., Tripp, L., Matthews, G., Weiler, E. & Parasuraman, R. (2009) Effects of sensory modality on cerebral blood flow velocity during vigilance, Neuroscience Letters 461, 207-211
^Steriade, M. (1996) Awakening the brain. Nature 383: 24 - 25
^Lundberg, U. & Frankenhaeuser, M. (1979) Pituitary-adrenal and sympathetic adrenal correlates of distress and effort (Report 548). Stockholm, Sweden: University of Stockholm, Department of Psychology
^Davies, D.R. & Tune, G.S. (1969) Human Vigilance Performance. New York: American Elsevier
^Baker, C.H. (1963) Consistency of performance in two human vigilance tasks. Vigilance: A Symposium. New York: McGraw-Hill Performance
^Parasuraman, R. (1976) Consistency of Individual Differences of Human Vigilance Performance: An Abilities Classification Analysis. Journal of Applied Psychology Vol. 61 No. 4 486-492
^Levine, J.M., Romashko, T., & Fleishman, E.A. (1973) Evaluation of an abilities classification system for integrating and generalizing human performance research findings: An application to vigilance tasks. Journal of Applied Psychology 58, 149-157.
^Mackworth, Jane F. (1964) Performance Decrement in Vigilance, Threshold, and High-Speed Perceptual Motor Tasks. Canadian Journal of Psychology, 18(3). 209-223
^Solandt, D.Y. & Partridge, D.M. (1946) Research on auditory problems presented by naval operations. Journal of the Canadian Medical Service3. 323-329
^Mackworth, N.H. (1950) Researches on the measurement of human performance. Med .Res .Council, Special Report., No. 268
^Mackworth, J.F. (1965) The effect of amphetamine on the detectability of signals in a vigilance task. Canadian Journal of Psychology 19 (2). 104-117
^Wiliges, R.C. (1976) The vigilance increment: An ideal observer hypothesis. In T.B. Sheridan and G. Johannsen (Eds.) Monitoring Behavior and Supervisory Control. New York: Plenum
^Mackworth, J.F. (1963) Effect of Reference Marks on the Detection of Signals on a Clock Face. Journal of Applied Psychology, 47(3). 196-201.
^Kerkhoff, G.A., van der Schaaf, T.W. & Korving, H.J. (1980) Auditory Signal Detection: Effects of long-term practice and time on task. Perception and Psychophysics 28, 79-81
^Moray N., Fitter, M. Ostry, D., Favreau D., & Nagy, V. (1976) Attention to pure tones. Quarterly Journal of Experimental Psychology 28, 271-283
^Uenking, M. (2000) Pilot Biofeedback Training in the Cognitive Awareness Training Study. American Institute of Aeronautics and Astronomics, Proceedings 2000-4074, 1-8
^Fisk, A.D. & Schneider, W. (1981) Control and automatic processing during tasks requiring sustained attention: A new approach to vigilance. Human Factors 23, 737-750.
^Parasuraman, R. & Giambra, L. (1991) Skill Development in Vigilance: Effects of Event Rate and Age. Psychology and Aging, 6(2), 155-169.
^Deaton, J. & Parasuraman, R. (1993) Sensory and Cognitive Vigilance: Effect of Age on Performance and Subjective Workload. Human Performance, 6(1), 71-97.
^Berardi, A., Parasuraman, R. & Haxby, J. (2001) Overall vigilance and Sustained Attention Decrements in Healthy Aging. Experimental Aging Research 27, 19-39.
^Mackworth, J.F. (1969) Vigilance and Habituation. Baltimore MD: Penguin
^Parasuraman, R. (1985) Sustained attention: a multifactorial approach. IN Attention and performance XI. M. Posner and O Marin, (Eds.) 493-511. Hillsdale NJ: Lawrence Erlbaum
^Rohrbaugh, J.W., Stapleton, J.M., Parasuraman, R., & Zubovic, E.A. (1987) Dose-related effects of ethanol on sustained attention and Event Related Potentials. Alcohol 4:293-300
Piala Dunia Futsal FIFATrofi Piala Dunia Futsal FIFA 2012Mulai digelar1989WilayahInternasional (FIFA)Jumlah tim24Juara bertahan Portugal (Gelar ke-1)Tim tersukses Brasil (5 gelar)Situs webPiala Dunia Piala Dunia Futsal FIFA 2024 Piala dunia Futsal FIFA adalah kejuaraan internasional untuk futsal, versi dalam ruangan (indoor) dari sepak bola. Kejuaraan ini diselenggarakan setiap empat tahun, tepatnya pada tahun genap di antara dua penyelenggaraan Piala Dunia FIFA. Pergelaran pertama ...
كاتدرائية مار أفرام السرياني معلومات أساسيّة الانتماء الديني الكنيسة السريانية الأرثوذكسية – مطرانية حلب وتوابعها المدينة حلب، سوريا نوع العمارة كنيسة الطراز المعماري عمارة مسيحية سريانية تاريخ الانتهاء 1926 تعديل مصدري - تعديل كاتدرائية مار أفرام السرياني هيَ إحد
Vic-le-Comte Comuna francesa Escudo Vic-le-ComteLocalización de Vic-le-Comte en Francia Coordenadas 45°38′35″N 3°14′46″E / 45.643055555556, 3.2461111111111Entidad Comuna francesa • País Francia • Región Auvernia-Ródano-Alpes • Departamento Puy-de-Dôme • Distrito Distrito de Clermont-Ferrand • Mancomunidad Mond'Arverne CommunautéAlcalde Antoine Desforges (PS)(2020-2026)Superficie • Total 18,09 km² Altitud ...
Ця стаття є частиною Проєкту:Населені пункти України (рівень: невідомий) Портал «Україна»Мета проєкту — покращувати усі статті, присвячені населеним пунктам та адміністративно-територіальним одиницям України. Ви можете покращити цю статтю, відредагувавши її, а на стор�...
Hai to Gensou no GrimgarSampul novel ringan volume pertama.灰と幻想のグリムガル(Hai to Gensō no Gurimugaru)GenrePetualangan, Fantasi Novel ringanPengarangAo JūmonjiIlustratorEiri ShiraiPenerbitOverlap BunkoTerbit25 Juni 2013 – sekarangVolume19 MangaPengarangMutsumi OkubashiPenerbitSquare EnixMajalahGangan JokerDemografiShōnenTerbit22 April 2015 – 22 Juni 2016Volume3 Seri animeSutradaraRyosuke NakamuraProduserMasaya SaitoNaoki HaradaShigetoshi SatoSkenarioRyosuke NakamuraMusik...
This article is about a New York state law. For the Philippine law also known as the Reproductive Health Act, see Responsible Parenthood and Reproductive Health Act of 2012. Reproductive Health ActNew York State LegislatureFull nameReproductive Health ActAcronymRHAIntroducedJanuary 9, 2019Assembly votedJanuary 22, 2019 (92-47)Senate votedJanuary 22, 2019 (38-24)Signed into lawJanuary 22, 2019Sponsor(s)Deborah J. Glick (Assembly),Liz Krueger (Senate)GovernorAndrew CuomoStatus: Current legislat...
1989 Australian short film This article is about the 1989 Australian film. For other films with similar titles, see Loverboy (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Lover Boy 1989 film – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this t...
American consumer electronics manufacturer and distributor Unisonic Products CorporationIndustryConsumer electronicsHeadquarters1115 Broadway, New York City, United StatesProductsCalculators, CRT television sets, video game consoles, digital watches, telephones, answering machines, alarm clocks Unisonic Products Corporation was an American manufacturer and distributor of consumer electronics from the 1970s to the 1990s. Although headquartered in New York City, Unisonic outsourced its manufact...
1985 American neo-noir comedy thriller film by Michael Ritchie FletchTheatrical release posterDirected byMichael RitchieWritten byAndrew BergmanBased onFletchby Gregory McdonaldProduced byPeter DouglasAlan GreismanStarring Chevy Chase Joe Don Baker Dana Wheeler-Nicholson Richard Libertini Kareem Abdul-Jabbar Tim Matheson CinematographyFred SchulerEdited byRichard A. HarrisMusic byHarold FaltermeyerDistributed byUniversal PicturesRelease dateMay 31, 1985 (1985-05-31)Running time...
Эту статью предлагается удалить.Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/4 октября 2022.Пока процесс обсуждения не завершён, статью можно попытаться улучшить, однако следует воздерживаться от переименований или немо�...
Thế giới khủng long:Vương quốc sụp đổ Áp phích của phim chiếu rạp tại Việt NamĐạo diễnJ. A. BayonaSản xuất Frank Marshall Patrick Crowley Belén Atienza Tác giả Colin Trevorrow Derek Connolly Dựa trênCác nhân vậtcủa Michael CrichtonDiễn viên Chris Pratt Bryce Dallas Howard Rafe Spall Justice Smith Daniella Pineda James Cromwell Toby Jones Ted Levine B. D. Wong Isabella Sermon Geraldine Chaplin Jeff Goldblum Âm nhạcMichael GiacchinoQua...
Cuisine of the Makassar and Buginese people of Indonesia This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Makassar cuisine – news · newspapers · books · scholar · JSTOR (April 2022) (Learn how and when to remove this template message) Coto Makassar This article is part of the series onIndonesian cuisineMasaka...
This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Beatrice Deer – news · newspapers · books · scholar · JSTOR (March 2011) (Learn how and when to remove this template message) Beatrice Deer (born ...
South American variation of an Italian dish This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Milanesa – news · newspapers · books · scholar · JSTOR (May 2010) (Learn how and when to remove this template message) Milanesa The milanesa is a variation of the Lombard veal Milanese, or the Austrian Wiener Schnitze...
Susanne GeorgiSusanne Georgi all'Eurovision Song Contest 2009 Nazionalità Danimarca GenerePopDance Periodo di attività musicale1995 – in attività Strumentovoce EtichettaPicap Modifica dati su Wikidata · Manuale Susanne Georgi Nielsen (Kolding, 27 luglio 1976) è una cantante danese residente in Andorra. Ha rappresentato l'Andorra all'Eurovision Song Contest 2009 con il brano La teva decisió (Get a Life).[1] Indice 1 Carriera 2 Vita privata 3 Discogr...
تشايلدريس الاسم الرسمي (بالإنجليزية: Childress) الإحداثيات 34°25′30″N 100°12′50″W / 34.425°N 100.21388888889°W / 34.425; -100.21388888889 تاريخ التأسيس 1890 تقسيم إداري البلد الولايات المتحدة[1][2] التقسيم الأعلى مقاطعة تشايلدريس، تكساس عاصمة لـ مقاطعة تشاي�...
У этого термина существуют и другие значения, см. Права человека (значения). ПравоТеория Естественные и законные права Права требования и права свободы Отрицательные и положительные права Индивидуальные и групповые права Подразделы прав человека Три поколения Гражданс...
1984 novel by Indira Goswami Pages Stained With Blood First edition coverAuthorIndira GoswamiTranslatorPradip AcharyaCover artistGeeta DharmarajanLanguageEnglishGenreAssamese LiteraturePublisherKatha BooksPublication placeIndiaMedia typePrint (Hardcover),Pages337ISBN81-87649-11-9LC ClassMLCS 2003/00915 PK1569.G578 Pages Stained With Blood (2001) originally published as Tej Aru Dhulire Dhushorito Prishtha is an Assamese novel by Indira Goswami that depicts the gory Sikh pogrom &...