Van Hove singularity

In condensed matter physics, a Van Hove singularity is a singularity (non-smooth point) in the density of states (DOS) of a crystalline solid. The wavevectors at which Van Hove singularities occur are often referred to as critical points of the Brillouin zone. For three-dimensional crystals, they take the form of kinks (where the density of states is not differentiable). The most common application of the Van Hove singularity concept comes in the analysis of optical absorption spectra. The occurrence of such singularities was first analyzed by the Belgian physicist Léon Van Hove in 1953 for the case of phonon densities of states.[1]

Theory

Consider a one-dimensional lattice of N particle sites, with each particle site separated by distance a, for a total length of L = Na. Instead of assuming that the waves in this one-dimensional box are standing waves, it is more convenient to adopt periodic boundary conditions:[2]

where is wavelength, and n is an integer. (Positive integers will denote forward waves, negative integers will denote reverse waves.) The shortest wavelength needed to describe a wavemotion in the lattice is equal to 2a which then corresponds to the largest needed wave number and which also corresponds to the maximum possible : . We may define the density of states g(k)dk as the number of standing waves with wave vector k to k+dk:[3]

Extending the analysis to wavevectors in three dimensions the density of states in a box of side length will be

where is a volume element in k-space, and which, for electrons, will need to be multiplied by a factor of 2 to account for the two possible spin orientations. By the chain rule, the DOS in energy space can be expressed as

where is the gradient in k-space.

The set of points in k-space which correspond to a particular energy E form a surface in k-space, and the gradient of E will be a vector perpendicular to this surface at every point.[4] The density of states as a function of this energy E satisfies:

where the integral is over the surface of constant E. We can choose a new coordinate system such that is perpendicular to the surface and therefore parallel to the gradient of E. If the coordinate system is just a rotation of the original coordinate system, then the volume element in k-prime space will be

We can then write dE as:

and, substituting into the expression for g(E) we have:

where the term is an area element on the constant-E surface. The clear implication of the equation for is that at the -points where the dispersion relation has an extremum, the integrand in the DOS expression diverges. The Van Hove singularities are the features that occur in the DOS function at these -points.

A detailed analysis[5] shows that there are four types of Van Hove singularities in three-dimensional space, depending on whether the band structure goes through a local maximum, a local minimum or a saddle point. In three dimensions, the DOS itself is not divergent although its derivative is. The function g(E) tends to have square-root singularities (see the Figure) since for a spherical free electron gas Fermi surface

so that .

In two dimensions the DOS is logarithmically divergent at a saddle point and in one dimension the DOS itself is infinite where is zero.

A sketch of the DOS g(E) versus energy E for a simulated three-dimensional solid. The Van Hove singularities occur where dg(E)/dE diverges.

Experimental observation

The optical absorption spectrum of a solid is most straightforwardly calculated from the electronic band structure using Fermi's Golden Rule where the relevant matrix element to be evaluated is the dipole operator where is the vector potential and is the momentum operator. The density of states which appears in the Fermi's Golden Rule expression is then the joint density of states, which is the number of electronic states in the conduction and valence bands that are separated by a given photon energy. The optical absorption is then essentially the product of the dipole operator matrix element (also known as the oscillator strength) and the JDOS.

The divergences in the two- and one-dimensional DOS might be expected to be a mathematical formality, but in fact they are readily observable. Highly anisotropic solids like graphite (quasi-2D) and Bechgaard salts (quasi-1D) show anomalies in spectroscopic measurements that are attributable to the Van Hove singularities. Van Hove singularities play a significant role in understanding optical intensities in single-walled carbon nanotubes (SWNTs) which are also quasi-1D systems. Twisted graphene layers also show pronounced Van-Hove singularities in the DOS due to the interlayer coupling.[6]

Notes

  1. ^ Van Hove, Léon (15 March 1953). "The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal". Physical Review. 89 (6). American Physical Society (APS): 1189–1193. Bibcode:1953PhRv...89.1189V. doi:10.1103/physrev.89.1189. ISSN 0031-899X.
  2. ^ See equation 2.9 in http://www2.physics.ox.ac.uk/sites/default/files/BandMT_02.pdf From we have
  3. ^ *M. A. Parker(1997-2004)"Introduction to Density of States" Marcel-Dekker Publishing p.7. Archived September 8, 2006, at the Wayback Machine
  4. ^ *Ziman, John (1972). Principles of the Theory of Solids. Cambridge University Press. ISBN B0000EG9UB.
  5. ^ *Bassani, F.; Pastori Parravicini, G. (1975). Electronic States and Optical Transitions in Solids. Pergamon Press. ISBN 978-0-08-016846-3. This book contains an extensive discussion of the types of Van Hove singularities in different dimensions and illustrates the concepts with detailed theoretical-versus-experimental comparisons for Ge and graphite.
  6. ^ Brihuega, I.; Mallet, P.; González-Herrero, H.; Trambly de Laissardière, G.; Ugeda, M. M.; Magaud, L.; Gómez-Rodríguez, J. M.; Ynduráin, F.; Veuillen, J.-Y. (8 November 2012). "Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis". Physical Review Letters. 109 (19). American Physical Society (APS): 196802. arXiv:1209.0991. Bibcode:2012PhRvL.109s6802B. doi:10.1103/physrevlett.109.196802. hdl:10486/668230. ISSN 0031-9007. PMID 23215414. S2CID 117429714.

Read other articles:

Italian composer Mario LavezziLavezzi at the Sanremo Music Festival 2018BornBruno Mario Lavezzi (1948-05-08) 8 May 1948 (age 75)Milan, ItalyOccupationsinger-songwriter Bruno Mario Lavezzi (born 8 May 1948) is an Italian singer-songwriter, composer, record producer and guitarist. Life and career Born in Milan, he studied piano and guitar at the Scuola Civica di Milano.[1] He started his career in 1963, as the singer and guitarist for the band The Trappers.[2][3] In...

 

Bộ trưởng Bộ Tư phápViệt NamBiểu trưng Bộ tư phápĐương nhiệmLê Thành Longtừ 8 tháng 4 năm 2016Bộ Tư phápChức vụBộ trưởng(thông dụng)Đồng chí Bộ trưởng (Đảng viên Cộng sản gọi nhau)Thành viên củaBan Chấp hành Trung ương ĐảngBan Chỉ đạo cải cách Tư pháp Trung ươngChính phủ Việt NamBáo cáo tớiThủ tướngTrụ sở60 Trần Phú, Ba Đình, Hà NộiBổ nhiệm bởiChủ tịch nướctheo s...

 

Yang MuliaEduardus SangsunS.V.D.Uskup RutengGerejaGereja Katolik RomaKeuskupanRutengPenunjukan3 Desember 1984(41 tahun, 172 hari)Masa jabatan berakhir13 Oktober 2008(65 tahun, 121 hari)PendahuluVitalis Djebarus, S.V.D.PenerusHubertus LetengImamatTahbisan imam12 Juli 1972[1](29 tahun, 28 hari)Tahbisan uskup25 Maret 1985(41 tahun, 284 hari)oleh Donatus Djagom, S.V.D.Informasi pribadiNama lahirEduardus SangsunLahir(1943-06-14)14 Juni 1943Karot...

Halaman ini berisi artikel tentang maskapai penerbangan Amerika Serikat dari 1969 hingga 1978. Untuk maskapai penerbangan lain dengan nama yang sama, lihat Air South. Air South IATA ICAO Kode panggil KQ Didirikan1969Berhenti beroperasi1978Pusat operasiBandar Udara Atlanta MunicipalKantor pusatSt. Simons, Georgia Fairchild F-27 South Air di Bandar Udara Atlanta Municipal (1974). Air South adalah maskapai penerbangan yang berbasis di Amerika Serikat. Didirikan sebagai Nationwide Airlines Southe...

 

الديالكتيك السلبي (بالألمانية: Negative Dialektik)‏[1]، و(بالإنجليزية: Negative dialectics)‏، و(بالفرنسية: Dialectique négative)‏، و(بالإيطالية: Dialettica negativa)‏، و(باليابانية: Hitei benshoho)‏، و(باليونانية: Arnetike dialektike)‏، و(بالكورية: Pujong-pyonjungbop)‏، و(بالهولندية: Negatieve dialectiek)‏، و(بالبرتغالية: Dialética negativa ()‏�...

 

العلاقات القطرية المدغشقرية قطر مدغشقر   قطر   مدغشقر تعديل مصدري - تعديل   العلاقات القطرية المدغشقرية هي العلاقات الثنائية التي تجمع بين قطر ومدغشقر.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة قطر مدغشقر �...

American baseball player (born 1989) For the dancer, see Patrick Corbin (dancer). Baseball player Patrick CorbinCorbin with the Washington Nationals in 2020Washington Nationals – No. 46PitcherBorn: (1989-07-19) July 19, 1989 (age 34)Clay, New York, U.S.Bats: LeftThrows: LeftMLB debutApril 30, 2012, for the Arizona DiamondbacksMLB statistics (through April 16, 2024)Win–loss record97–121Earned run average4.45Strikeouts1,605 Teams Arizona Diamondbacks (2012–2018) Wash...

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Football Club Castiglione Società Sportiva Dilettantistica. Football Club CastiglioneStagione 2012-2013Sport calcio SquadraFootball Club Castiglione Allenatore Lorenzo Ciulli Presidente Tiziano Tonello Lega Pro Seconda Divisione7º posto nel girone A. Maggiori presen...

 

Subspecies of snake Apalachicola Kingsnake Taken at Cincinnati Zoo. Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Reptilia Order: Squamata Suborder: Serpentes Family: Colubridae Genus: Lampropeltis Species: L. getula Subspecies: L. g. meansi Trinomial name Lampropeltis getula meansiKrysko & Judd, 2006 The Apalachicola kingsnake (also known as the Apalachicola Lowlands kingsnake) is a subspecies of nonvenomous colubrid snake found in a smal...

Period of reduced funding and interest in AI research Part of a series onArtificial intelligence Major goals Artificial general intelligence Recursive self-improvement Planning Computer vision General game playing Knowledge reasoning Machine learning Natural language processing Robotics AI safety Approaches Symbolic Deep learning Bayesian networks Evolutionary algorithms Situated approach Hybrid intelligent systems Systems integration Applications Projects Deepfake Machine translation Generat...

 

Nicki HunterHunter, Januari 2010Lahir19 Desember 1979 (umur 44)[1]Lake Worth, Florida, A.S[1]Nama lainNikk Hunter, Nikki, Nikki Hunter, Nicky Hunter, Nickie Hunter & Nicki[1]Suami/istriJason Horne[2]Anak2 Nicki Hunter (lahir 19 Desember 1979)[1] adalah mantan aktris porno, sutradara, produser, artis tata rias, penyiar radio, asal Amerika Serikat.[3] Referensi ^ a b c d e Nicki Hunter di Internet Adult Film Database ^ Mike Ramone (...

 

King of Lagash En-hegalKing of LagashInscription For En-hegal, King of Lagash (𒂗𒃶𒅅 𒈗𒂠 𒉢𒁓𒆷), in the Tablet of En-hegalReignc. 2570  BCESuccessorLugalshaengurDynasty1st dynasty of Lagash Lagashclass=notpageimage| Lugalshaengur was governor of Lagash, circa 2600 BCE. En-hegal, also Enhengal (Sumerian: 𒂗𒃶𒅅, en-ḫe₂-ŋal₂), was possibly an ancient ruler of the Sumerian city-state of Lagash.[1] Only one inscription mentioning him is known, the Tabl...

Национальное аэрокосмическое агентство Азербайджана Штаб-квартира Баку, ул. С. Ахундова, AZ 1115 Локация  Азербайджан Тип организации Космическое агентство Руководители Директор: Натиг Джавадов Первый заместитель генерального директора Тофик Сулейманов Основание Осн�...

 

The economics of religion concerns both the application of the techniques of economics to the study of religion and the relationship between economic and religious behaviours.[1][2] Contemporary writers on the subject trace it back to Adam Smith (1776).[3] Empirical work examines the causal influence of religion in microeconomics to explain individual behaviour[4] and in the macroeconomic determinants of economic growth.[5] Religious economics (or theol...

 

1956 SF novel by Robert A. Heinlein For other uses, see Door into Summer (disambiguation). The Door into Summer First Edition coverAuthorRobert A. HeinleinCover artistMel HunterLanguageEnglishGenreScience fictionPublisherDoubledayPublication dateserial version 1956; hardcover 1957Publication placeUnited StatesMedia typePrint (Hardcover & Paperback)ISBN0-330-02516-3OCLC16365175 The Door into Summer is a science fiction novel by American science fiction writer Robert A. Heinlein, ...

2022年加利福尼亞州州長選舉 ← 2021 (罷免) 2022年11月8日 2026 →   获提名人 加文·紐森 布萊恩·達爾 政党 民主党 共和黨 民選得票 6470099 4462910 得票率 59.18% 40.82% 縣市結果紐森:     50–60%     60–70%     70–80%     80–90%達爾:     50–60%     60–70%     70–80%  ...

 

American judge (born 1966) Maryellen NoreikaJudge of the United States District Court for the District of DelawareIncumbentAssumed office August 9, 2018Appointed byDonald TrumpPreceded byGregory M. Sleet Personal detailsBorn (1966-07-12) July 12, 1966 (age 57)Pittsburgh, Pennsylvania, U.S.Political partyDemocratic[1]EducationLehigh University (BS)Columbia University (MA)University of Pittsburgh (JD) Maryellen Noreika (born July 12, 1966) is an American lawyer and jurist servi...

 

Międzyrzeccomune Międzyrzec – Veduta LocalizzazioneStato Polonia Voivodato Lubusz Distretto Międzyrzecz AmministrazioneCapoluogoMiędzyrzecz SindacoRemigiusz Lorenz dal 2014 TerritorioCoordinatedel capoluogo52°26′N 15°35′E52°26′N, 15°35′E (Międzyrzec) Altitudine43,1 – 137,6 m s.l.m. Superficie315,32 km² Abitanti25 131 (30-06-2017) Densità79,7 ab./km² Frazioni18 sołectw Altre informazioniLinguepolacca Cod. postale66-300 Prefiss...

Questa voce o sezione sull'argomento terrorismo non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Massacro di Deir Yassin Data9 aprile 194811:00 – 17:00 LuogoDeir Yassin Stato Mandato di Palestina Coordinate31°47′11.31″N 35°10′40.92″E31°47′11.31″N, 35°10′40.92″E Obiettivoarabi armati di Deir Yassin ResponsabiliIrgun, Lohamei ...

 

منى الشاذلي معلومات شخصية اسم الولادة منى محمد محمود أحمد الشاذلي  الميلاد 23 سبتمبر 1973 (51 سنة)  القاهرة  مواطنة مصر  الحياة العملية المدرسة الأم الجامعة الأمريكية بالقاهرة  المهنة مقدمة تلفزيونية  اللغة الأم العربية  اللغات العربية  سنوات النشاط 1996 - حت...