In mathematics, a tube domain is a generalization of the notion of a vertical strip (or half-plane) in the complex plane to several complex variables. A strip can be thought of as the collection of complex numbers whose real part lie in a given subset of the real line and whose imaginary part is unconstrained; likewise, a tube is the set of complex vectors whose real part is in some given collection of real vectors, and whose imaginary part is unconstrained.
Let Rn denote real coordinate space of dimension n and Cn denote complex coordinate space. Then any element of Cn can be decomposed into real and imaginary parts:
Let A be an open subset of Rn. The tube over A, denoted TA, is the subset of Cn consisting of all elements whose real parts lie in A:[2][a]
Suppose that A is a connected open set. Then any complex-valued function that is holomorphic in a tube TA can be extended uniquely to a holomorphic function on the convex hull of the tube ch TA,[2] which is also a tube, and in fact
In the special case of p = 2, functions in H2(TA) can be characterized as follows.[5] Let ƒ be a complex-valued function on Rn satisfying
The Fourier–Laplace transform of ƒ is defined by
Then F is well-defined and belongs to H2(TA). Conversely, every element of H2(TA) has this form.
A corollary of this characterization is that H2(TA) contains a nonzero function if and only if A contains no straight line.
Tubes over cones
Let A be an open convex cone in Rn. This means that A is an openconvex set such that, whenever x lies in A, so does the entire ray from the origin to x. Symbolically,
If A is a cone, then the elements of H2(TA) have L2 boundary limits in the sense that[5]
exists in L2(B). There is an analogous result for Hp(TA), but it requires additional regularity of the cone (specifically, the dual coneA* needs to have nonempty interior).