Torsion-free module

In algebra, a torsion-free module is a module over a ring such that zero is the only element annihilated by a regular element (non zero-divisor) of the ring. In other words, a module is torsion free if its torsion submodule contains only the zero element.

In integral domains the regular elements of the ring are its nonzero elements, so in this case a torsion-free module is one such that zero is the only element annihilated by some non-zero element of the ring. Some authors work only over integral domains and use this condition as the definition of a torsion-free module, but this does not work well over more general rings, for if the ring contains zero-divisors then the only module satisfying this condition is the zero module.

Examples of torsion-free modules

Over a commutative ring R with total quotient ring K, a module M is torsion-free if and only if Tor1(K/R,M) vanishes. Therefore flat modules, and in particular free and projective modules, are torsion-free, but the converse need not be true. An example of a torsion-free module that is not flat is the ideal (x, y) of the polynomial ring k[x, y] over a field k, interpreted as a module over k[x, y].

Any torsionless module over a domain is a torsion-free module, but the converse is not true, as Q is a torsion-free Z-module that is not torsionless.

Structure of torsion-free modules

Over a Noetherian integral domain, torsion-free modules are the modules whose only associated prime is zero. More generally, over a Noetherian commutative ring the torsion-free modules are those modules all of whose associated primes are contained in the associated primes of the ring.

Over a Noetherian integrally closed domain, any finitely-generated torsion-free module has a free submodule such that the quotient by it is isomorphic to an ideal of the ring.

Over a Dedekind domain, a finitely-generated module is torsion-free if and only if it is projective, but is in general not free. Any such module is isomorphic to the sum of a finitely-generated free module and an ideal, and the class of the ideal is uniquely determined by the module.

Over a principal ideal domain, finitely-generated modules are torsion-free if and only if they are free.

Torsion-free covers

Over an integral domain, every module M has a torsion-free cover FM from a torsion-free module F onto M, with the properties that any other torsion-free module mapping onto M factors through F, and any endomorphism of F over M is an automorphism of F. Such a torsion-free cover of M is unique up to isomorphism. Torsion-free covers are closely related to flat covers.

Torsion-free quasicoherent sheaves

A quasicoherent sheaf F over a scheme X is a sheaf of -modules such that for any open affine subscheme U = Spec(R) the restriction F|U is associated to some module M over R. The sheaf F is said to be torsion-free if all those modules M are torsion-free over their respective rings. Alternatively, F is torsion-free if and only if it has no local torsion sections.[1]

See also

References

  1. ^ Stacks Project, Tag 0AVQ.

Read other articles:

Peta Kabupaten Buton Utara di Sulawesi Tenggara Berikut adalah daftar kecamatan dan kelurahan di Kabupaten Buton Utara, Provinsi Sulawesi Tenggara, Indonesia. Kabupaten Buton Utara terdiri dari 6 kecamatan, 12 kelurahan dan 78 desa dengan luas wilayah 1.864,91 km² dan jumlah penduduk sebesar 62.197 jiwa (2017) dengan sebaran penduduk 33 jiwa/km².[1][2] Daftar kecamatan dan kelurahan di Kabupaten Buton Utara, adalah sebagai berikut: Kode Kemendagri Kecamatan Jumlah Kelurahan ...

 

GeneraloberstFriedrich FrommFromm, 1940 Kepala Peralatan Angkatan Darat dan komandan Tentara PenggantiMasa jabatan1 September 1939 – 20 Juli 1944 PendahuluJoachim von Stülpnagel [de]PenggantiHeinrich Himmler Informasi pribadiLahir(1888-10-08)8 Oktober 1888Berlin, Kerajaan Prusia, JermanMeninggal12 Maret 1945(1945-03-12) (umur 56)Brandenburg-Görden Prison, Negara Bebas Prusia, Jerman NaziAnakHelga Heinke [de]Karier militerPihak  German Empire (h...

 

British Army cavalry regiment 4th Royal Irish Dragoon GuardsBadge of the 4th Royal Irish Dragoon GuardsActive1685–1922Country Kingdom of England (1685–1707)  Kingdom of Great Britain (1707–1746, 1788–1800)  Kingdom of Ireland (1746–1788)  United Kingdom (1801–1922)Branch British ArmyTypeCavalryRoleLine CavalrySize1 RegimentNickname(s)The Blue Horse, The Mounted Micks, The ButtermilksMotto(s)Quis separabit (Who shall separate us?)MarchQuick: St Patrick's Day Slo...

Finnish freestyle skier Janne Lahtela Lahtela in 2010 Medal record Men's freestyle skiing Representing  Finland Olympic Games 2002 Salt Lake City Moguls 1998 Nagano Moguls FIS Freestyle World Ski Championships 1999 Meiringen-Hasliberg Moguls 1999 Meiringen-Hasliberg Dual Moguls Janne Lahtela (born 28 February 1974) is a Finnish former athlete, who established himself as one of the most dominant persons in the history of moguls skiing. He is currently the head coach of Japan's freestyle s...

 

Questa voce sugli argomenti giocatori di football americano statunitensi e cestisti statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Branch McCracken Nazionalità  Stati Uniti Altezza 193 cm Pallacanestro Ruolo Centro, ala, guardia Termine carriera 1965 - allenatore Hall of fame Naismith Hall of Fame (1960) Carriera Giovanili 1926-1930 Indiana Hoosiers Squadre di club  I...

 

Cricket terminology Batsman redirects here. Not to be confused with Batman. Batswoman redirects here. Not to be confused with Batwoman. Sachin Tendulkar is the highest run scorer in men's international cricket Mithali Raj is the highest run scorer in women's international cricket Jack Hobbs is the highest run scorer in first-class cricket In cricket, batting is the act or skill of hitting the ball with a bat to score runs and prevent the loss of one's wicket. Any player who is currently batti...

Rugby league competition 1988 New South Wales Rugby League premiershipTeams16Premiers Canterbury-Bankstown (6th title)Minor premiers Cronulla-Sutherland (1st title)Matches played183Points scored6559Attendance1966658Top points scorer(s) Gary Belcher (218)Player of the year Barry Russell (Rothmans Medal)Top try-scorer(s) John Ferguson (20)← 19871989 → The 1988 NSWRL season was the 81st season of professional rugby league football in Australia, and saw the first expansion of the Ne...

 

Cet article est une ébauche concernant une localité suisse. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Reigoldswil Vue de la place centrale de Reigoldswil. Armoiries Administration Pays Suisse Canton Bâle-Campagne District Waldenburg NPA 4418 No OFS 2893 Démographie Populationpermanente 1 560 hab. (31 décembre 2022) Densité 169 hab./km2 Langue Allemand Géographie Coordonnées 47°...

 

Archivio apostolico vaticano Archivum Apostolicum Vaticanumsvolge la propria specifica attività di custodia e valorizzazione degli atti e dei documenti che riguardano il governo della Chiesa universale, perché siano innanzitutto a disposizione della Santa Sede e della Curia Romana nel compimento della propria attività e, secondariamente, per concessione pontificia, possano rappresentare per tutti gli studiosi, senza distinzione di Paese e religione, fonti per la conoscenza, anche profana, ...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

Katedral Sankt PöltenKatedral Bunda Maria Diangkat ke Surga, Sankt PöltenJerman: Dom Mariä Himmelfahrtcode: de is deprecated Katedral Sankt PöltenKatedral Sankt PöltenLokasiSankt PöltenNegaraAustriaDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Sankt Pölten Katedral Sankt Pölten[1] (Jerman: Dom Maria Himmelfahrtcode: de is deprecated )[2] adalah sebuah gereja katedral Katolik yang berlokasi di Sankt Pölten, Au...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2021) أثرت على إثيوبيا مجاعة واسعة الانتشار بين عامي 1983 و1985،[1] وكانت أسوأ مجاعة تضرب البلاد منذ قرن. خلّفت المجاعة 1.2 مليون وفاة، و400 ألف لاجئ هاجروا بلادهم، و2.5...

4th ArmyGerman: 4. Armee4th Army InsigniaActive1939–45Country Nazi GermanyBranch German army ( Wehrmacht)TypeField armySize165,000 (June 1944)[1]60,000 (March 1945)[2]EngagementsWorld War II Invasion of Poland Battle of France Battle of Białystok–Minsk Battle of Smolensk Battle of Moscow Operation Büffel East Prussian Offensive Military unit The 4th Army (German: 4. Armee) was a field army of the Wehrmacht during World War II. Invasions of Poland and France The 4th...

 

Deformity involving inward deviation of an extended forearm Medical conditionCubitus varusCubitus varus versus cubitus valgusSpecialtyRheumatology, medical genetics Cubitus varus is a varus deformity in which the extended forearm is deviated towards midline of the body. Cubitus varus is often referred to as Gunstock deformity, due to the crooked nature of the healing.[1][2] The opposite condition is cubitus valgus. Signs and symptoms Complications Instances in which the medial...

 

Fortaleza da Guia Fortaleza da Guia (Macau)Colina da Guia, Macau Início da construção 1603 - 1622 Proprietário inicial Estado Português Função inicial Militar (fortaleza) Proprietário atual Estado Chinês Função atual Cultural Património Mundial Critérios ii, iii, iv, vi Ano 15 de julho de 2005 Referência 1110 en fr es Património Nacional SIPA 7968 Geografia País Macau, China Localidade Macau Coordenadas 0° N 0° E Fortaleza de Nossa Senhora da Guia, Macau: aspecto das muralh...

Bahasa Melayu Klasik بهاس ملايو کلاسيک WilayahMelaka, Aceh, TernateEraAbad ke-14 sampai ke-18 M Rumpun bahasaAustronesia Melayu-Polinesia (MP)Melayu-SumbawaUtara dan TimurMelayikMelayuBahasa Melayu Klasik Bentuk awalProto-Melayu Melayu KunoBahasa Melayu Klasik Sistem penulisanAbjad JawiKode bahasaISO 639-3– Status pemertahanan Punah EXSingkatan dari Extinct (Punah)Terancam CRSingkatan dari Critically endangered (Terancam Kritis) SESingkatan dari Severely endangered (Terancam ...

 

Cigarette brand For other uses, see Winston (disambiguation). WinstonProduct typeCigaretteOwnerITG Brands (U.S. only) Japan Tobacco (Outside the U.S.)CountryUnited StatesIntroduced1954; 70 years ago (1954)Previous ownersR.J. ReynoldsTaglineSpirit of the U.S.A. (Philippines, 1986-2006)Enjoy True Quality (Philippines, 2005-2008)Stay True (2011-)Websitewinstoncigarettes.comCarcinogenicity: IARC group 1 Winston is an American brand of cigarettes, currently owned and manufactured...

 

Destroyer class in the Japanese Maritime Self-Defense Forces Isoyuki (DD-127) Class overview NameHatsuyuki class Builders Hitachi Zosen Corporation IHI Corporation Sumitomo Heavy Industries Mitsubishi Heavy Industries Mitsui Engineering & Shipbuilding Operators Japan Maritime Self-Defense Force Preceded byYamagumo class Succeeded byAsagiri class Built1979–1986 In commission1980–2021 Completed12 Retired12 General characteristics TypeGeneral-purpose destroyer (DD) Disp...

Bosnian footballer Đorđe Kamber Personal informationDate of birth (1983-11-20) 20 November 1983 (age 40)Place of birth Sanski Most, Bosnia and Herzegovina,YugoslaviaHeight 1.83 m (6 ft 0 in)Position(s) MidfielderTeam informationCurrent team Budapest Honvéd IISenior career*Years Team Apps (Gls)1998–2002 Zastava Kragujevac 12 (1)2001–2002 Remont Čačak 24 (1)2002–2006 OFK Beograd 37 (0)2004–2005 → Mačva Šabac (loan) 39 (1)2005–2006 → FK Srem (loan) 15 (0)...

 

Para otros usos de este término, véase Pantanal (desambiguación). Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Pantanal» – noticias · libros · académico · imágenesEste aviso fue puesto el 21 de abril de 2012. Pantanal Países Brasil Brasil Bolivia BoliviaParaguay Paraguay[editar datos en Wikidata] El Pantanal o el Gran Pantanal es una llanura aluvial que se extiende principalmen...