The topological recursion is then a recursive definition of infinite sequences of symmetric meromorphic n-forms on , with poles at ramification points only, for integers g≥0 such that 2g-2+n>0. The definition is a recursion on the integer 2g-2+n.
In many applications, the n-form is interpreted as a generating function that measures a set of surfaces of genus g and with n boundaries. The recursion is on 2g-2+n the Euler characteristics, whence the name "topological recursion".
Origin
The topological recursion was first discovered in random matrices. One main goal of random matrix theory, is to find the large size asymptotic expansion of n-point correlation functions, and in some suitable cases, the asymptotic expansion takes the form of a power series. The n-form is then the gth coefficient in the asymptotic expansion of the n-point correlation function. It was found[2][3][4] that the coefficients always obey a same recursion on 2g-2+n. The idea to consider this universal recursion relation beyond random matrix theory, and to promote it as a definition of algebraic curves invariants, occurred in Eynard-Orantin 2007[1] who studied the main properties of those invariants.
(Case of simple branch points. For higher order branchpoints, see the section Higher order ramifications below)
For and :
where is called the recursion kernel:
and is the local Galois involution near a branch point , it is such that .
The primed sum means excluding the two terms and .
For and :
with any antiderivative of .
The definition of and is more involved and can be found in the original article of Eynard-Orantin.[1]
Main properties
Symmetry: each is a symmetric -form on .
poles: each is meromorphic, it has poles only at branchpoints, with vanishing residues.
Homogeneity: is homogeneous of degree . Under the change , we have .
Dilaton equation:
where .
Loop equations: The following forms have no poles at branchpoints
where the sum has no prime, i.e. no term excluded.
Deformations: The satisfy deformation equations
Limits: given a family of spectral curves , whose limit as is a singular curve, resolved by rescaling by a power of , then .
Symplectic invariance: In the case where is a compact algebraic curve with a marking of a symplectic basis of cycles, is meromorphic and is meromorphic and is the fundamental second kind differential normalized on the marking, then the spectral curve and , have the same shifted by some terms.
Modular properties: In the case where is a compact algebraic curve with a marking of a symplectic basis of cycles, and is the fundamental second kind differential normalized on the marking, then the invariants are quasi-modular forms under the modular group of marking changes. The invariants satisfy BCOV equations.[clarification needed]
Generalizations
Higher order ramifications
In case the branchpoints are not simple, the definition is amended as follows[7] (simple branchpoints correspond to k=2):
The first sum is over partitions of with non empty parts , and in the second sum, the prime means excluding all terms such that .
is called the recursion kernel:
The base point * of the integral in the numerator can be chosen arbitrarily in a vicinity of the branchpoint, the invariants will not depend on it.
Topological recursion invariants and intersection numbers
The invariants can be written in terms of intersection numbers of tautological classes:[8]
(*)
where the sum is over dual graphs of stable nodal Riemann surfaces of total arithmetic genus , and smooth labeled marked points , and equipped with a map .
is the Chern class of the cotangent line bundle whose fiber is the cotangent plane at .
is the th Mumford's kappa class.
The coefficients , , , are the Taylor expansion coefficients of and in the vicinity of branchpoints as follows:
in the vicinity of a branchpoint (assumed simple), a local coordinate is . The Taylor expansion of near branchpoints , defines the coefficients .
The Taylor expansion at , defines the 1-forms coefficients
whose Taylor expansion near a branchpoint is .
Write also the Taylor expansion of .
Equivalently, the coefficients can be found from expansion coefficients of the Laplace transform, and the coefficients are the expansion coefficients of the log of the Laplace transform .
For example, we have
The formula (*) generalizes ELSV formula as well as Mumford's formula and Mariño-Vafa formula.
Some applications in enumerative geometry
Mirzakhani's recursion
M. Mirzakhani's recursion for hyperbolic volumes of moduli spaces is an instance of topological recursion.
For the choice of spectral curve
the n-form is the Laplace transform of the Weil-Petersson volume
where is the moduli space of hyperbolic surfaces of genus g with n geodesic boundaries of respective lengths , and is the Weil-Petersson volume form.
The topological recursion for the n-forms , is then equivalent to Mirzakhani's recursion.
For the choice of spectral curve
the n-form is
where is the connected simple Hurwitz number of genus g with ramification : the number of branch covers of the Riemann sphere by a genus g connected surface, with 2g-2+n simple ramification points, and one point with ramification profile given by the partition .
Gromov–Witten numbers and the BKMP conjecture
Let a toric Calabi–Yau 3-fold, with Kähler moduli .
Its mirror manifold is singular over a complex plane curve given by a polynomial equation , whose coefficients are functions of the Kähler moduli.
For the choice of spectral curve
with the fundamental second kind differential on ,
According to the BKMP[5] conjecture, the n-form is
where
is the genus g Gromov–Witten number, representing the number of holomorphic maps of a surface of genus g into , with n boundaries mapped to a special Lagrangian submanifold . is the 2nd relative homology class of the surface's image, and are homology classes (winding number) of the boundary images.
The BKMP[5] conjecture has since then been proven.
Notes
^ abcInvariants of algebraic curves and topological expansion, B. Eynard, N. Orantin, math-ph/0702045, ccsd-hal-00130963, Communications in Number Theory and Physics, Vol 1, Number 2, p347-452.
^B. Eynard, Topological expansion for the 1-hermitian matrix model correlation functions, JHEP/024A/0904, hep-th/0407261
A short overview of the ”Topological recursion”, math-ph/arXiv:1412.3286
^A. Alexandrov, A. Mironov, A. Morozov, Solving Virasoro Constraints in Matrix Models, Fortsch.Phys.53:512-521,2005, arXiv:hep-th/0412205
^L. Chekhov, B. Eynard, N. Orantin, Free energy topological expansion for the 2-matrix model, JHEP 0612 (2006) 053, math-ph/0603003
^ abcVincent Bouchard, Albrecht Klemm, Marcos Marino, Sara Pasquetti, Remodeling the B-model, Commun.Math.Phys.287:117-178,2009
^P. Dunin-Barkowski, N. Orantin, S. Shadrin, L. Spitz, "Identification of the Givental formula with the spectral curve topological recursion procedure", Commun.Math.Phys. 328 (2014) 669-700.
^V. Bouchard, B. Eynard, "Think globally, compute locally", JHEP02(2013)143.
^B. Eynard, Invariants of spectral curves and intersection theory of moduli spaces of complex curves, math-ph: arxiv.1110.2949, Journal Communications in Number Theory and Physics, Volume 8, Number 3.
Potret karya Pierre-Joseph Dedreux-Dorcy, sekarang di Istana Versailles Bon-Adrien Jeannot de Moncey (atau Jannot de Moncey), Adipati Conegliano ke-1, Baron Conegliano ke-1, Peer of France (31 Juli 1754 – 20 April 1842), adalah seorang prajurit berpengaruh dalam Perang Revolusioner Prancis dan marsekal Kekaisaran pada Peperangan Napoleonik. Ia kemudian menjadi gubernur Hôtel des Invalides. MONCEY adalah salah satu nama yang diukir pada Arc de Triomphe, pada Kolom 33. Lihat pu...
Panorama jalan di Gerena. Gerena merupakan sebuah kota yang terletak di wilayah Provinsi Sevilla, Andalusia, Spanyol Lihat pula Daftar munisipalitas di Seville Daftar munisipalitas di Spanyol lbsKota di Provinsi Sevilla Aguadulce Alanís Albaida del Aljarafe Alcalá de Guadaíra Alcalá del Río Alcolea del Río Algámitas Almadén de la Plata Almensilla Arahal Aznalcázar Aznalcóllar Badolatosa Benacazón Bollullos de la Mitación Bormujos Brenes Burguillos Camas Cantillana Carmona Carrión...
Bzikebi Bzikebi (bahasa Georgia: ბზიკები, tawon) adalah sebuah grup musikal dari Georgia yang terdiri atas seorang anak laki-laki bernama Giorgi Shiolashvili dan dua anak perempuan bernama Mariam Kikuashvili and Mariam Tatulashvili,[1][2] semua anggotanya berumur 10 tahun selama kontes.[3] Mereka memenangi Kontes Lagu Eurovision Junior 2008 di Lemesos, Siprus pada 22 November 2008 dengan lagu mereka Bzz....[4] Selama penampilan, mereka mereka ...
Paulus Petrus Meouchi بولس الثاني بطرس المعوشيKardinal Patriark AntiokhiaGerejaGereja MaronitTakhtaPatriark AntiokhiaPemilihan25 Mei 1955Masa jabatan berakhir11 Januari 1975PendahuluAntonius Petrus AridaPenerusAntonius Petrus KhoraishImamatTahbisan imam7 Desember 1917 (Imam)Tahbisan uskup8 Desember 1934 (Uskup)oleh Antonius Petrus AridaPelantikan kardinal22 Februari 1965oleh Paus Paulus VIPeringkatPatriark Kardinal-UskupInformasi pribadiLahir(1894-04-01)1 April 1894J...
Kejuaraan Eropa UEFA 1980Italia 1980UEFA Euro 1980 official logoInformasi turnamenTuan rumahItaliaJadwalpenyelenggaraan11 Juni – 22 JuniJumlahtim peserta8Tempatpenyelenggaraan4 (di 4 kota)Hasil turnamenJuara Jerman Barat (gelar ke-2)Tempat kedua BelgiaTempat ketiga CekoslowakiaTempat keempat ItaliaStatistik turnamenJumlahpertandingan14Jumlah gol27 (1,93 per pertandingan)Jumlahpenonton345.463 (24.676 per pertandingan)Pencetak golterbanyak Klaus Allofs(3 gol...
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article n’est pas rédigé dans un style encyclopédique (janvier 2018). Vous pouvez améliorer sa rédaction ! Nouveau-né 10 minutes après la naissance. Il a été identifié (bracelet) et traité contre l'infection des yeux immédiatement après l'accouchement. Le terme nouveau-né désigne un enfant de sa naissance jusqu'à 28 jours ; au-delà, l'enfant est appelé nourrisson. La discipline m...
Claudia Livia JuliaStatue de Livilla.BiographieNaissance Probablement 13 av. J.-C.Lyon, GauleDécès 31 ap. J.-C.RomeSurnom LivillaÉpoque Haut Empire romainFamille Julio-Claudiens, Claudii NeronesPère Nero Claudius DrususMère Antonia la JeuneFratrie GermanicusClaudeConjoint Caius Julius Cæsar Vipsanianus DrususEnfants Julia Drusi Caesaris FiliaTiberius Julius Caesar Nero GemellusTiberius Claudius Caesar Germanicus GemellusGens Claudiimodifier - modifier le code - modifier Wikidata Claudia...
Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Associazione Sportiva Melfi. Associazione Sportiva MelfiStagione 2012-2013Sport calcio Squadra Melfi Allenatore Leonardo Bitetto Presidente Giuseppe Maglione Lega Pro Seconda Divisione8º posto nel girone B. Maggiori presenzeCampionato: Spirito (34) Miglior marca...
Patung dada François de Sourdis karya Gianlorenzo Bernini dari sekitar tahun 1620 François d'Escoubleau de Sourdis (25 Oktober 1574 – 1628) adalah seorang prelatus Katolik Prancis, Uskup Agung Bordeaux dan pendiri Irish College pada 1603. Biografi Ia lahir di Châtillon-sur-Sèvre, Poitou, sebagai putra sulung dari pasangan François d'Escoubleau dan Isabeau Babou de la Bourdasière. Referensi Catholic Hierarchy: François d'Escoubleau de Sourdis Diarsipkan 2018-03-16 di Archive.is The Ca...
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (February 2022) (Learn how and when to remove this template message) Queso en salsa chipotle Quesillo en salsa verde Queso en salsa or queso con chile is a typical dish in Mexican cuisine. It consists in cow's milk cheese submerged in a mild spicy salsa. There may be variations ...
Georgian-Greek weightlifter Akakios KakiasvilisPersonal informationBirth nameKakhi KakhiashviliNationalityGeorgian / GreekBorn (1969-07-13) 13 July 1969 (age 54)Tskhinvali, Georgian SSR, Soviet UnionHeight1.78 m (5 ft 10 in)SportSportWeightlifting Medal record Men's weightlifting Representing Georgia World Championships 1993 Melbourne –91 kg European Championships 1993 Sofia –91 kg 1994 Sokolov –91 kg Representing the Unified Team Olympic Games ...
2003 2009 Élections municipales québécoises de 2005 6 novembre 2005 Type d’élection Élections municipales Postes à élire 8 préfets1 099 maires6 993 conseillers Participation 44,5 % modifier - modifier le code - voir Wikidata Les élections municipales québécoises de 2005 sont les scrutins tenus le 6 novembre 2005 dans l'ensemble des municipalités de même que dans huit municipalités régionales de comté au Québec. Elles permettent ...
Historic church in Illinois, United States United States historic placeHoly Trinity Russian Orthodox Cathedral and RectoryU.S. National Register of Historic PlacesChicago Landmark Location1121 N. Leavitt StreetChicago, IllinoisCoordinates41°54′6.98″N 87°40′54.77″W / 41.9019389°N 87.6818806°W / 41.9019389; -87.6818806Built1903ArchitectLouis SullivanNRHP reference No.76000693[1]Significant datesAdded to NRHPMarch 16, 1976Designated CLMa...
King of Saudi Arabia since 2015 Not to be confused with King Salmon, Solomon, or Salman bin Abdulaziz bin Salman Al Saud. In this Arabic name, the surname is Al Saud. Salman سلمانCustodian of the Two Holy MosquesKing Salman in 2020King of Saudi ArabiaReign23 January 2015 – presentBay'ah23 January 2015PredecessorAbdullahCrown princes Muqrin bin Abdulaziz (2015) Muhammad bin Nayef (2015–2017) Mohammed bin Salman (2017–present) Prime Minister of Saudi Arabia In office23 January 2015 ...
Formulas for numerical integration Newton–Cotes formula for n = 2 {\displaystyle n=2} In numerical analysis, the Newton–Cotes formulas, also called the Newton–Cotes quadrature rules or simply Newton–Cotes rules, are a group of formulas for numerical integration (also called quadrature) based on evaluating the integrand at equally spaced points. They are named after Isaac Newton and Roger Cotes. Newton–Cotes formulas can be useful if the value of the integrand at equally spaced...
الصويرية القديمة اللقب AGOZE تقسيم إداري البلد المغرب[1] الجهة الإقتصادية مراكش آسفي المسؤولون الإقليم إقليم اسفي خصائص جغرافية إحداثيات 32°02′00″N 9°20′00″W / 32.03333333°N 9.33333333°W / 32.03333333; -9.33333333 المساحة ؟؟؟ كم² كم² الارتفاع 10 السكان التعداد السكاني ؟؟؟ [2 ...
Mexican socialist alliance Politics of Mexico Federal government Constitution of Mexico(history) Human rights LGBT rights Law Abortion Labor Nationality Capital punishment Life imprisonment Gun politics Executive President of Mexico Andrés Manuel López Obrador(MORENA) List of heads of state Federal government Cabinet Legislature Congress of the Union LXIII Legislature of the Mexican Congress Senate of the Republic President of the SenateOlga Sánchez Cordero (MORENA) Chamber of Deputies Pre...
Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Pareado» – noticias · libros · académico · imágenesEste aviso fue puesto el 10 de marzo de 2014. El pareado o dístico es una estrofa de dos versos que riman entre sí, pudiendo dicha rima ser en consonante o asonante. Estos pareados pueden ser de arte menor o de arte mayor y ambos versos deben tener la misma medida. Es la más sencilla de las estrofas, por...
Tour de Luxembourg 2017 GénéralitésCourse77e Tour de LuxembourgCompétitionUCI Europe Tour 2017 2.HCÉtapes5Dates31 mai – 4 juin 2017Distance720,4 kmPays LuxembourgLieu de départLuxembourgLieu d'arrivéeLuxembourgÉquipes14Partants108Arrivants92Vitesse moyenne39,016 km/hSite officielSite officielRésultatsVainqueur Greg Van Avermaet (BMC Racing Team)Deuxième Xandro Meurisse (Wanty-Groupe Gobert)Troisième Anthony Perez (Cofidis, Solutions Crédits)Classement par points Greg Van Avermae...