Thomas–Yau conjecture

In mathematics, and especially symplectic geometry, the Thomas–Yau conjecture asks for the existence of a stability condition, similar to those which appear in algebraic geometry, which guarantees the existence of a solution to the special Lagrangian equation inside a Hamiltonian isotopy class of Lagrangian submanifolds. In particular the conjecture contains two difficulties: first it asks what a suitable stability condition might be, and secondly if one can prove stability of an isotopy class if and only if it contains a special Lagrangian representative.

The Thomas–Yau conjecture was proposed by Richard Thomas and Shing-Tung Yau in 2001,[1][2] and was motivated by similar theorems in algebraic geometry relating existence of solutions to geometric partial differential equations and stability conditions, especially the Kobayashi–Hitchin correspondence relating slope stable vector bundles to Hermitian Yang–Mills metrics.

The conjecture is intimately related to mirror symmetry, a conjecture in string theory and mathematical physics which predicts that mirror to a symplectic manifold (which is a Calabi–Yau manifold) there should be another Calabi–Yau manifold for which the symplectic structure is interchanged with the complex structure.[3] In particular mirror symmetry predicts that special Lagrangians, which are the Type IIA string theory model of BPS D-branes, should be interchanged with the same structures in the Type IIB model, which are given either by stable vector bundles or vector bundles admitting Hermitian Yang–Mills or possibly deformed Hermitian Yang–Mills metrics. Motivated by this, Dominic Joyce rephrased the Thomas–Yau conjecture in 2014, predicting that the stability condition may be understood using the theory of Bridgeland stability conditions defined on the Fukaya category of the Calabi–Yau manifold, which is a triangulated category appearing in Kontsevich's homological mirror symmetry conjecture.[4]

Statement

The statement of the Thomas–Yau conjecture is not completely precise, as the particular stability condition is not yet known. In the work of Thomas and Thomas–Yau, the stability condition was given in terms of the Lagrangian mean curvature flow inside the Hamiltonian isotopy class of the Lagrangian, but Joyce's reinterpretation of the conjecture predicts that this stability condition can be given a categorical or algebraic form in terms of Bridgeland stability conditions.

Special Lagrangian submanifolds

Consider a Calabi–Yau manifold of complex dimension , which is in particular a real symplectic manifold of dimension . Then a Lagrangian submanifold is a real -dimensional submanifold such that the symplectic form is identically zero when restricted to , that is . The holomorphic volume form , when restricted to a Lagrangian submanifold, becomes a top degree differential form. If the Lagrangian is oriented, then there exists a volume form on and one may compare this volume form to the restriction of the holomorphic volume form: for some complex-valued function . The condition that is a Calabi–Yau manifold implies that the function has norm 1, so we have where is the phase angle of the function . In principle this phase function is only locally continuous, and its value may jump. A graded Lagrangian is a Lagrangian together with a lifting of the phase angle to , which satisfies everywhere on .

An oriented, graded Lagrangian is said to be a special Lagrangian submanifold if the phase angle function is constant on . The average value of this function, denoted , may be computed using the volume form as

and only depends on the Hamiltonian isotopy class of . Using this average value, the condition that is constant may be written in the following form, which commonly occurs in the literature. This is the definition of a special Lagrangian submanifold:

Hamiltonian isotopy classes

The condition of being a special Lagrangian is not satisfied for all Lagrangians, but the geometric and especially physical properties of Lagrangian submanifolds in string theory are predicted to only depend on the Hamiltonian isotopy class of the Lagrangian submanifold. An isotopy is a transformation of a submanifold inside an ambient manifold which is a homotopy by embeddings. On a symplectic manifold, a symplectic isotopy requires that these embeddings are by symplectomorphisms, and a Hamiltonian isotopy is a symplectic isotopy for which the symplectomorphisms are generated by Hamiltonian functions. Given a Lagrangian submanifold , the condition of being a Lagrangian is preserved under Hamiltonian (in fact symplectic) isotopies, and the collection of all Lagrangian submanifolds which are Hamiltonian isotopic to is denoted , called the Hamiltonian isotopy class of .

Lagrangian mean curvature flow and stability condition

Given a Riemannian manifold and a submanifold , the mean curvature flow is a differential equation satisfied for a one-parameter family of embeddings defined for in some interval with images denoted , where . Namely, the family satisfies mean curvature flow if

where is the mean curvature of the submanifold . This flow is the gradient flow of the volume functional on submanifolds of the Riemannian manifold , and there always exists short time existence of solutions starting from a given submanifold .

On a Calabi–Yau manifold, if is a Lagrangian, the condition of being a Lagrangian is preserved when studying the mean curvature flow of with respect to the Calabi–Yau metric. This is therefore called the Lagrangian mean curvature flow (Lmcf). Furthermore, for a graded Lagrangian , Lmcf preserves Hamiltonian isotopy class, so for all where the Lmcf is defined.

Thomas introduced a conjectural stability condition[1] defined in terms of gradings when splitting into Lagrangian connected sums. Namely a graded Lagrangian is called stable if whenever it may be written as a graded Lagrangian connected sum

the average phases satisfy the inequality

In the later language of Joyce using the notion of a Bridgeland stability condition, this was further explained as follows. An almost-calibrated Lagrangian (which means the lifted phase is taken to lie in the interval or some integer shift of this interval) which splits as a graded connected sum of almost-calibrated Lagrangians corresponds to a distinguished triangle

in the Fukaya category. The Lagrangian is stable if for any such distinguished triangle, the above angle inequality holds.

Statement of the conjecture

The conjecture as originally proposed by Thomas is as follows:

Conjecture:[1] An oriented, graded, almost-calibrated Lagrangian admits a special Lagrangian representative in its Hamiltonian isotopy class if and only if it is stable in the above sense.

Following this, in the work of Thomas–Yau, the behaviour of the Lagrangian mean curvature flow was also predicted.

Conjecture (Thomas–Yau):[1][2] If an oriented, graded, almost-calibrated Lagrangian is stable, then the Lagrangian mean curvature flow exists for all time and converges to a special Lagrangian representative in the Hamiltonian isotopy class .

This conjecture was enhanced by Joyce, who provided a more subtle analysis of what behaviour is expected of the Lagrangian mean curvature flow. In particular Joyce described the types of finite-time singularity formation which are expected to occur in the Lagrangian mean curvature flow, and proposed expanding the class of Lagrangians studied to include singular or immersed Lagrangian submanifolds, which should appear in the full Fukaya category of the Calabi–Yau.

Conjecture (Thomas–Yau–Joyce):[4] An oriented, graded, almost-calibrated Lagrangian splits as a graded Lagrangian connected sum of special Lagrangian submanifolds with phase angles given by the convergence of the Lagrangian mean curvature flow with surgeries to remove singularities at a sequence of finite times . At these surgery points, the Lagrangian may change its Hamiltonian isotopy class but preserves its class in the Fukaya category.

In the language of Joyce's formulation of the conjecture, the decomposition is a symplectic analogue of the Harder-Narasimhan filtration of a vector bundle, and using Joyce's interpretation of the conjecture in the Fukaya category with respect to a Bridgeland stability condition, the central charge is given by

,

the heart of the t-structure defining the stability condition is conjectured to be given by those Lagrangians in the Fukaya category with phase , and the Thomas–Yau–Joyce conjecture predicts that the Lagrangian mean curvature flow produces the Harder–Narasimhan filtration condition which is required to prove that the data defines a genuine Bridgeland stability condition on the Fukaya category.

References

  1. ^ a b c d Thomas, R. P. (2001). "Moment Maps, Monodromy and Mirror Manifolds". Symplectic Geometry and Mirror Symmetry. pp. 467–498. arXiv:math/0104196. doi:10.1142/9789812799821_0013. ISBN 978-981-02-4714-0. S2CID 15284349.
  2. ^ a b Thomas, R. P.; Yau, S.-T. (2002). "Special Lagrangians, stable bundles and mean curvature flow". Communications in Analysis and Geometry. 10 (5): 1075–1113. arXiv:math/0104197. doi:10.4310/CAG.2002.V10.N5.A8. S2CID 2153403.
  3. ^ Hori, Kentaro; Katz, Sheldon; Klemm, Albrecht; Pandharipande, Rahul; Thomas, Richard; Vafa, Cumrun; Ravi, Vakil; Zaslow, Eric (2003). Mirror Symmetry (PDF). Clay Mathematics Monographs. Vol. 1. AMS and Clay Mathematics Institute. p. 929. ISBN 978-0-8218-2955-4.
  4. ^ a b Joyce, Dominic (2015). "Conjectures on Bridgeland stability for Fukaya categories of Calabi–Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow". EMS Surveys in Mathematical Sciences. 2: 1–62. arXiv:1401.4949. doi:10.4171/EMSS/8. S2CID 118102887.

Read other articles:

SirmioneComune di SirmioneLuas • Total33 km2 (13 sq mi)Ketinggian68 m (223 ft)Populasi (2011)[1] • Total8.230DemonimSirmionesiKode area telepon030Situs webSitus web resmi Sirmione adalah sebuah komune yang terletak di Provinsi Brescia, Lombardia, Italia utara. Komune ini berbatasan dengan komune Desenzano del Garda dan Peschiera del Garda. Komune ini merupakan pusat kota bersejarah di semenanjung Sirmio yang terletak di selatan Dan...

 

Single by Alexandra BurkeThe SilenceSingle by Alexandra Burkefrom the album Overcome Recorded2009–10Studio Album version: Henson (Los Angeles) Single mix: Metropolis (London) Genre Pop R&B Length3:35LabelSycoSongwriter(s) Nadir Khayat Bilal Hajji Savan Kotecha Producer(s)RedOneAlexandra Burke singles chronology Start Without You (2010) The Silence (2010) Elephant (2012) The Silence is a song by British singer Alexandra Burke from her debut studio album Overcome (2009). The song was...

 

Princess & the BossGenre Drama Roman BerdasarkanPrincess & the Bossoleh JunielooSkenario Lalitya Putri S. Dipodiputro Novan E. Prananta SutradaraAnggy UmbaraPemeran Syifa Hadju Rizky Nazar Lagu pembukaDalam Jagamu oleh Kaneishia Yusuf feat Hanif AndareviLagu penutupDalam Jagamu oleh Kaneishia Yusuf feat Hanif AndareviPenata musikStevesmith Music ProductionNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode8ProduksiProduserManoj PunjabiSinematografiAwankjjPe...

Meidan Shah, EsfahanSitus Warisan Dunia UNESCOKriteriaBudaya: i, v, viNomor identifikasi115Pengukuhan1979 (ke-3) Lapangan Naqsh-e Jehaan (atau Meidan Emam) terletak di pusat kota Isfahan, Iran adalah salah satu lapangan terbesar di dunia. Lapangan seluas sembilan hektare ini dikelilingi oleh bangunan peninggalan Dinasti Shafawi. Secara resminya dikenal sebagai Medan Imam (میدان امام), dahulu bernama Medan Shah (میدان شاه). Lapangan ini digambarkan pada sisi belakang uang...

 

Sebuah biskuit dan saus yang disajikan bersama dengan kentang goreng rumahanBiskuit dan saus adalah sebuah hidangan sarapan populer di Amerika Serikat khususnya di kawasan Selatan.[1] Hidangan tersebut terdiri dari biskuit berbahan halus yang dilumuri dengan remah atau saus, yang terbuat dari olahan sosis babi masak, tepung, susu, dan sering kali (namun tidak selalu) potongan sosis, daging bakon, daging sapi, atau daging lainnya. Saus tersebut sering kali diberi rasa dengan lada hitam...

 

XVI Giochi asiatici Canton 2010 Periodo dal 12 novembreal 27 novembre Paesi partecipanti 45 Sport 42 Atleti 9704 Stadio Stadio Olimpico di Guangdong Cronologia PrecedenteXV Giochi asiatici SuccessivaXVII Giochi asiatici Doha Incheon   I XVI Giochi asiatici si disputarono a Canton, Cina, dal 12 novembre al 27 novembre 2010. Indice 1 Sedi di gara 2 Medagliere 3 Calendario 4 Note 5 Altri progetti 6 Collegamenti esterni Sedi di gara Stadio Olimpico di Guangdong Stadio Olimpico di Guangdong ...

Congregations of plankton Thin layer redirects here. For other uses, see Thin film. Visible layers of a red tide, a planktonic algal bloom, off the shores of Southern California Part of a series onPlankton Trophic mode Phytoplankton Zooplankton Mixoplankton Mycoplankton Bacterioplankton Virioplankton By size Heterotrophic picoplankton Microalgae Microzooplankton Nanophytoplankton calcareous Photosynthetic picoplankton Picoeukaryote Picoplankton Marine microplankton By taxonomy Algae diatoms c...

 

Italian political scientist and journalist Gaetano MoscaCOSML, COCI, SoKMember of the Italian Chamber of Deputiesfor PalermoIn office24 March 1909 – 29 September 1919ConstituencyCaccamo Personal detailsBorn(1858-04-01)1 April 1858Palermo, Kingdom of the Two SiciliesDied8 November 1941(1941-11-08) (aged 83)Rome, ItalyPolitical partyHistorical RightAlma materUniversity of PalermoProfessionTeacher, journalistPhilosophy careerEra20th-century philosophyRegionWestern philosophySchoo...

 

This article is about the land force of modern Greece. For the military systems in Ancient Greece, see Hoplite. Land branch of the Greek military This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2023) (Learn how and when to remove this message) Hellenic ArmyΕλληνικός ΣτρατόςHellenic Army SealFounded1821 (de facto)1828 (official)Country...

Pour les articles homonymes, voir Halévy. Pour les autres membres de la famille, voir Famille Halévy. Ludovic HalévyLudovic Halévy photographié par Paul Nadar en 1896.FonctionFauteuil 22 de l'Académie française4 décembre 1884 - 7 mai 1908Joseph d’HaussonvilleEugène BrieuxBiographieNaissance 1er janvier 1834Ancien 10e arrondissement de ParisDécès 7 mai 1908 (à 74 ans)1er arrondissement de ParisSépulture Cimetière de MontmartreNationalité françaiseFormation Lycée L...

 

Françoise Barré-SinoussiLahir30 Juli 1947 (umur 76)Paris, PrancisKebangsaanPrancisDikenal atasMenemukan virus HIVPenghargaanNobel bidang Kedokteran dan Fisiologi (2008)Karier ilmiahBidangVirologiInstitusiInstitut Pasteur Françoise Barré-Sinoussi (lahir 30 Juli 1947) adalah seorang ahli virologi kebangsaan Prancis dan menjabat sebagai direktur Unité de Régulation des Infections Rétrovirales di Institut Pasteur di Paris, Prancis. Ia berserta kolega-koleganya yaitu Luc Montagnier da...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

Museum in Jalgaon, Maharashtra, India This article may have been created or edited in return for undisclosed payments, a violation of Wikipedia's terms of use. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. (September 2019) Gandhi Teerth - Gandhi MuseumEstablished25 March 2012 (2012-03-25)LocationJalgaon, MaharashtraCoordinates20°56′40″N 75°33′19″E / 20.9444918°N 75.555363°E / 20.944491...

 

This is a complete list of episodes for the Japanese anime series Yu-Gi-Oh! Duel Monsters GX (changed to simply Yu-Gi-Oh! GX in the 4Kids dub, due to the previous anime not using Duel Monsters in the title), based on the Yu-Gi-Oh! Duel Monsters anime. There are four different music themes set accompanying the opening animation and ending credits. For episodes 1-33, they are Rising Weather Hallelujah for the opening animation and Genkai Battle for the ending credits. From episode 34 through t...

Günter Anger Busbetrieb Basisinformationen Unternehmenssitz Potsdam Webpräsenz https://angerbus.de/ Bezugsjahr 2020 Eigentümer Günter Anger Rechtsform GmbH & Co. KG Gründung 1990 Verkehrsverbund Verkehrsverbund Berlin-Brandenburg Linien Bus 1 Anzahl Fahrzeuge Omnibusse 40 Statistik Einzugsgebiet Potsdam, Potsdam-Mittelmark, Teltow-Fläming, Dahme-Spreewalddep1 Betriebseinrichtungen Betriebshöfe Potsdam Die Busbetrieb Günter Anger GmbH & Co. KG ist ein Busunternehmen, mit Sitz ...

 

Euclid Организация ESA Главные подрядчики Thales Alenia Space, Airbus Defence and Space[1] Волновой диапазон 550—900 нм (видимое) 920—2000 нм (инфракрасное) COSPAR ID 2023-092A NSSDCA ID 2023-092A SCN 57209 Местонахождение точка Лагранжа L2 системы Солнце — Земля (план)[1] Тип орбиты гало-орбита[6] Дата запуск...

 

西属主权地之戈梅拉島(Peñón de Vélez de la Gomera)、胡塞馬群島(Peñón de Alhucemas)與舍法林群島(Islas Chafarinas)、以及休达(Ceuta)、梅利利亚(Melilla)和阿尔沃兰岛(Isla de Alborán)位置示意圖 主权地(西班牙語:plazas de soberanía)是西班牙對於其位於北非与摩洛哥相邻之領土的稱呼(休达和梅利利亚除外),由西班牙中央政府直接管理。其包含戈梅拉岛、胡塞马群岛、�...

Location of Walker County in Texas This is a list of the National Register of Historic Places listings in Walker County, Texas. This is intended to be a complete list of properties listed on the National Register of Historic Places in Walker County, Texas. There are five properties listed on the National Register in the county. One property is a State Antiquities Landmark (SAL) and a Recorded Texas Historic Landmark (RTHL), and another property is also a SAL while containing within it an add...

 

ゴビ砂漠ゴビ砂漠の範囲(黄色部分)長軸全長1,500 km (930 mi)幅800 km (500 mi)面積1,295,000 km2 (500,000 sq mi)名称現地語名戈壁 (沙漠)Gēbì (shāmò)Говь (ᠭᠣᠪᠢ)  (日本語)地理国中国 および モンゴル州スフバートル県 および ウムヌゴビ県自治区内モンゴル自治区座標北緯42度35分 東経103度26分 / 北緯42.59度 東経103.43度 / 42.59; 103.43�...