In differential geometry , given a metaplectic structure
π π -->
P
: : -->
P
→ → -->
M
{\displaystyle \pi _{\mathbf {P} }\colon {\mathbf {P} }\to M\,}
on a
2
n
{\displaystyle 2n}
-dimensional symplectic manifold
(
M
,
ω ω -->
)
,
{\displaystyle (M,\omega ),\,}
the symplectic spinor bundle is the Hilbert space bundle
π π -->
Q
: : -->
Q
→ → -->
M
{\displaystyle \pi _{\mathbf {Q} }\colon {\mathbf {Q} }\to M\,}
associated to the metaplectic structure via the metaplectic representation. The metaplectic representation of the metaplectic group — the two-fold covering of the symplectic group — gives rise to an infinite rank vector bundle ; this is the symplectic spinor construction due to Bertram Kostant .[ 1]
A section of the symplectic spinor bundle
Q
{\displaystyle {\mathbf {Q} }\,}
is called a symplectic spinor field .
Let
(
P
,
F
P
)
{\displaystyle ({\mathbf {P} },F_{\mathbf {P} })}
be a metaplectic structure on a symplectic manifold
(
M
,
ω ω -->
)
,
{\displaystyle (M,\omega ),\,}
that is, an equivariant lift of the symplectic frame bundle
π π -->
R
: : -->
R
→ → -->
M
{\displaystyle \pi _{\mathbf {R} }\colon {\mathbf {R} }\to M\,}
with respect to the double covering
ρ ρ -->
: : -->
M
p
(
n
,
R
)
→ → -->
S
p
(
n
,
R
)
.
{\displaystyle \rho \colon {\mathrm {Mp} }(n,{\mathbb {R} })\to {\mathrm {Sp} }(n,{\mathbb {R} }).\,}
The symplectic spinor bundle
Q
{\displaystyle {\mathbf {Q} }\,}
is defined [ 2] to be the Hilbert space bundle
Q
=
P
× × -->
m
L
2
(
R
n
)
{\displaystyle {\mathbf {Q} }={\mathbf {P} }\times _{\mathfrak {m}}L^{2}({\mathbb {R} }^{n})\,}
associated to the metaplectic structure
P
{\displaystyle {\mathbf {P} }}
via the metaplectic representation
m
: : -->
M
p
(
n
,
R
)
→ → -->
U
(
L
2
(
R
n
)
)
,
{\displaystyle {\mathfrak {m}}\colon {\mathrm {Mp} }(n,{\mathbb {R} })\to {\mathrm {U} }(L^{2}({\mathbb {R} }^{n})),\,}
also called the Segal–Shale–Weil [ 3] [ 4] [ 5] representation of
M
p
(
n
,
R
)
.
{\displaystyle {\mathrm {Mp} }(n,{\mathbb {R} }).\,}
Here, the notation
U
(
W
)
{\displaystyle {\mathrm {U} }({\mathbf {W} })\,}
denotes the group of unitary operators acting on a Hilbert space
W
.
{\displaystyle {\mathbf {W} }.\,}
The Segal–Shale–Weil representation [ 6] is an infinite dimensional unitary representation
of the metaplectic group
M
p
(
n
,
R
)
{\displaystyle {\mathrm {Mp} }(n,{\mathbb {R} })}
on the space of all complex
valued square Lebesgue integrable square-integrable functions
L
2
(
R
n
)
.
{\displaystyle L^{2}({\mathbb {R} }^{n}).\,}
Because of the infinite dimension,
the Segal–Shale–Weil representation is not so easy to handle.
Notes
^ Kostant, B. (1974). "Symplectic Spinors". Symposia Mathematica . XIV . Academic Press: 139–152.
^ Habermann, Katharina; Habermann, Lutz (2006), Introduction to Symplectic Dirac Operators , Springer-Verlag , ISBN 978-3-540-33420-0 page 37
^ Segal, I.E (1962), Lectures at the 1960 Boulder Summer Seminar , AMS, Providence, RI
^ Shale, D. (1962). "Linear symmetries of free boson fields" . Trans. Amer. Math. Soc . 103 : 149–167. doi :10.1090/s0002-9947-1962-0137504-6 .
^ Weil, A. (1964). "Sur certains groupes d'opérateurs unitaires" . Acta Math . 111 : 143–211. doi :10.1007/BF02391012 .
^ Kashiwara, M ; Vergne, M. (1978). "On the Segal–Shale–Weil representation and harmonic polynomials". Inventiones Mathematicae . 44 : 1–47. doi :10.1007/BF01389900 .
Further reading