Strouhal number

In dimensional analysis, the Strouhal number (St, or sometimes Sr to avoid the conflict with the Stanton number) is a dimensionless number describing oscillating flow mechanisms. The parameter is named after Vincenc Strouhal, a Czech physicist who experimented in 1878 with wires experiencing vortex shedding and singing in the wind.[1][2] The Strouhal number is an integral part of the fundamentals of fluid mechanics.

The Strouhal number is often given as

where f is the frequency of vortex shedding in Hertz,[3] L is the characteristic length (for example, hydraulic diameter or the airfoil thickness) and U is the flow velocity. In certain cases, like heaving (plunging) flight, this characteristic length is the amplitude of oscillation. This selection of characteristic length can be used to present a distinction between Strouhal number and reduced frequency:

where k is the reduced frequency, and A is amplitude of the heaving oscillation.

Strouhal number (Sr) as a function of the Reynolds number (R) for the flow past a long circular cylinder.

For large Strouhal numbers (order of 1), viscosity dominates fluid flow, resulting in a collective oscillating movement of the fluid "plug". For low Strouhal numbers (order of 10−4 and below), the high-speed, quasi-steady-state portion of the movement dominates the oscillation. Oscillation at intermediate Strouhal numbers is characterized by the buildup and rapidly subsequent shedding of vortices.[4]

For spheres in uniform flow in the Reynolds number range of 8×102 < Re < 2×105 there co-exist two values of the Strouhal number. The lower frequency is attributed to the large-scale instability of the wake, is independent of the Reynolds number Re and is approximately equal to 0.2. The higher-frequency Strouhal number is caused by small-scale instabilities from the separation of the shear layer.[5][6]

Derivation

Knowing Newton’s Second Law stating force is equivalent to mass times acceleration, or , and that acceleration is the derivative of velocity, or (characteristic speed/time) in the case of fluid mechanics, we see

,

Since characteristic speed can be represented as length per unit time, , we get

,

where,

m = mass,
U = characteristic speed,
L = characteristic length.

Dividing both sides by , we get

,

where,

m = mass,
U = characteristic speed,
F = net external forces,
L = characteristic length.

This provides a dimensionless basis for a relationship between mass, characteristic speed, net external forces, and length (size) which can be used to analyze the effects of fluid mechanics on a body with mass.

If the net external forces are predominantly elastic, we can use Hooke’s Law to see

,

where,

k = spring constant (stiffness of elastic element),
ΔL = deformation (change in length).

Assuming , then . With the natural resonant frequency of the elastic system, , being equal to , we get

,

where,

m = mass,
U = characteristic speed,
= natural resonant frequency,
ΔL = deformation (change in length).

Given that cyclic motion frequency can be represented by we get,

,

where,

f = frequency,
L = characteristic length,
U = characteristic speed.

Applications

Micro/Nanorobotics

In the field of micro and nanorobotics, the Strouhal number is used alongside the Reynolds number in analyzing the impact of an external oscillatory fluidic flow on the body of a microrobot. When considering a microrobot with cyclic motion, the Strouhal number can be evaluated as

,

where,

f = cyclic motion frequency,
L = characteristic length of robot,
U = characteristic speed.

The analysis of a microrobot using the Strouhal number allows one to assess the impact that the motion of the fluid it is in has on its motion in relation to the inertial forces acting on the robot–regardless of the dominant forces being elastic or not.[7]

Medical

In the medical field, microrobots that use swimming motions to move may make micromanipulations in unreachable environments.

The equation used for a blood vessel:[8]

,

where,

f = oscillation frequency of the microbot swimming motion
D = blood vessel diameter
V = unsteady viscoelastic flow

The Strouhal number is used as a ratio of the Deborah number (De) and Weissenberg number (Wi):[8]

.

The Strouhal number may also be used to obtain the Womersley number (Wo). The case for blood flow can be categorized as an unsteady viscoelastic flow, therefore the Womersley number is[8]

,

Or considering both equations,

.

Metrology

In metrology, specifically axial-flow turbine meters, the Strouhal number is used in combination with the Roshko number to give a correlation between flow rate and frequency. The advantage of this method over the frequency/viscosity versus K-factor method is that it takes into account temperature effects on the meter.

where,

f = meter frequency,
U = flow rate,
C = linear coefficient of expansion for the meter housing material.

This relationship leaves Strouhal dimensionless, although a dimensionless approximation is often used for C3, resulting in units of pulses/volume (same as K-factor).

This relationship between flow and frequency can also be found in the aeronautical field. Considering pulsating methane-air coflow jet diffusion flames, we get

,

where,

a = fuel jet radius
w = the modulation frequency
U = exit velocity of the fuel jet

For a small Strouhal number (St=0.1) the modulation forms a deviation in the flow that travels very far downstream. As the Strouhal number grows, the non-dimensional frequency approaches the natural frequency of a flickering flame, and eventually will have greater pulsation than the flame.[9]


Animal locomotion

In swimming or flying animals, Strouhal number is defined as

where,

f = oscillation frequency (tail-beat, wing-flapping, etc.),
U = flow rate,
A = peak-to-peak oscillation amplitude.

In animal flight or swimming, propulsive efficiency is high over a narrow range of Strouhal constants, generally peaking in the 0.2 < St < 0.4 range.[10] This range is used in the swimming of dolphins, sharks, and bony fish, and in the cruising flight of birds, bats and insects.[10] However, in other forms of flight other values are found.[10] Intuitively the ratio measures the steepness of the strokes, viewed from the side (e.g., assuming movement through a stationary fluid) – f is the stroke frequency, A is the amplitude, so the numerator fA is half the vertical speed of the wing tip, while the denominator V is the horizontal speed. Thus the graph of the wing tip forms an approximate sinusoid with aspect (maximal slope) twice the Strouhal constant.[11]

Efficient motion

The Strouhal number is most commonly used for assessing oscillating flow as a result of an object's motion through a fluid. The Strouhal number reflects the difficulty for animals to travel efficiently through a fluid with their cyclic propelling motions. The number relates to propulsive efficiency, which peaks between 70%–80% when within the optimal Strouhal number range of 0.2 to 0.4. Through the use of factors such as the stroke frequency, the amplitude of each stroke, and velocity, the Strouhal number is able to analyze the efficiency and impact of an animal's propulsive forces through a fluid, such as those from swimming or flying. For instance, the value represents the constraints to achieve greater propulsive efficiency, which affects motion when cruising and aerodynamic forces when hovering.[12]

Greater reactive forces and properties that act against the object, such as viscosity and density, reduce the ability of an animal's motion to fall within the ideal Strouhal number range when swimming. Through the assessment of different species that fly or swim, it was found that the motion of many species of birds and fish falls within the optimal Strouhal range.[12] However, the Strouhal number varies more within the same species than other species based on the method of how they move in a constrained manner in response to aerodynamic forces.[12]

Example: Alcid

The Strouhal number has significant importance in analyzing the flight of animals since it is based on the streamlines and the animal's velocity as it travels through the fluid. Its significance is demonstrated through the motion of alcids as it passes through different mediums (air to water). The assessment of alcids determined the peculiarity of being able to fly under the efficient Strouhal number range in air and water despite a high mass relative to their wing area.[13] The alcid’s efficient dual-medium motion developed through natural selection where the environment played a role in the evolution of animals over time to fall under a certain efficient range. The dual-medium motion demonstrates how alcids had two different flight patterns based on the stroke velocities as it moved through each fluid.[13] However, as the bird travels through a different medium, it has to face the influence of the fluid’s density and viscosity. Furthermore, the alcid also has to resist the upward-acting buoyancy as it moves horizontally.

Scaling of the Strouhal number

Scale Analysis

In order to determine significance of the Strouhal number at varying scales, one may perform scale analysis–a simplification method to analyze the impact of factors as they change with respect to some scale. When considered in the context of microrobotics and nanorobotics, size is the factor of interest when performing scale analysis.

Scale analysis of the Strouhal number allows for analysis of the relationship between mass and inertial forces as both change with respect to size. Taking its original underived form, , we can then relate each term to size and see how the ratio changes as size changes.

Given where m is mass, V is volume, and is density, we can see mass is directly related to size as volume scales with length (L). Taking the volume to be , we can directly relate mass and size as

.

Characteristic speed (U) is in terms of , and relative distance scales with size, therefore

.

The net external forces (F) scales in relation to mass and acceleration, given by . Acceleration is in terms of , therefore . The mass-size relationship was established to be , so considering all three relationships, we get

.

Length (L) already denotes size and remains L.

Taking all of this together, we get

.

With the Strouhal number relating the mass to inertial forces, this can be expected as these two factors will scale proportionately with size and neither will increase nor decrease in significance with respect to their contribution to the body’s behavior in the cyclic motion of the fluid.

Relationship with the Richardson number

The scaling relationship between the Richardson number and the Strouhal number is represented by the equation:[14]

,

where a and b are constants depending on the condition.

For round helium buoyant jets and plumes:[14]

.

When ,

.

When ,

.

For planar buoyant jets and plumes:[14]

.

For shape-independent scaling:[14]

Relationship with Reynolds number

The Strouhal number and Reynolds number must be considered when addressing the ideal method to develop a body made to move through a fluid. Furthermore, the relationship for these values is expressed through Lighthill's elongated-body theory, which relates the reactive forces experienced by a body moving through a fluid with its inertial forces.[15] The Strouhal number was determined to depend upon the dimensionless Lighthill number, which in turn relates to the Reynolds number. The value of the Strouhal number can then be seen to decrease with an increasing Reynolds number, and to increase with an increasing Lighthill number.[15]

See also

  • Aeroelastic flutter – Interactions among inertial, elastic, and aerodynamic forces
  • Froude number – Dimensionless number; ratio of a fluid's flow inertia to the external field
  • Kármán vortex street – Repeating pattern of swirling vortices
  • Mach number – Dimensionless quantity in fluid dynamics
  • Reynolds number – Ratio of inertial to viscous forces acting on a liquid
  • Rossby number – Ratio of inertial force to Coriolis force
  • Weber number – Dimensionless number in fluid mechanics
  • Womersley number – Dimensionless expression of the pulsatile flow frequency in relation to viscous effects
  • Weissenberg number – product of shear strain rate and relaxation time in viscoelastic flows
  • Deborah number – Dimensionless number in rheology
  • Richardson number – Characteristic number of a falling body proportional to the quotient of potential and kinetic energy

References

  1. ^ Strouhal, V. (1878) "Ueber eine besondere Art der Tonerregung" (On an unusual sort of sound excitation), Annalen der Physik und Chemie, 3rd series, 5 (10) : 216–251.
  2. ^ White, Frank M. (1999). Fluid Mechanics (4th ed.). McGraw Hill. ISBN 978-0-07-116848-9.
  3. ^ Triantafyllou, M. S.; Triantafyllou, G. S.; Gopalkrishnan, R. (8 August 1991). "Wake mechanics for thrust generation in oscillating foils" (PDF). Physics of Fluids A: Fluid Dynamics (1989-1993). 3 (12): 2835. Bibcode:1991PhFlA...3.2835T. doi:10.1063/1.858173. Retrieved 13 August 2024.[permanent dead link]
  4. ^ Sobey, Ian J. (1982). "Oscillatory flows at intermediate Strouhal number in asymmetry channels". Journal of Fluid Mechanics. 125: 359–373. Bibcode:1982JFM...125..359S. doi:10.1017/S0022112082003371 (inactive 29 November 2024). S2CID 122167909.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  5. ^ Kim, K. J.; Durbin, P. A. (1988). "Observations of the frequencies in a sphere wake and drag increase by acoustic excitation". Physics of Fluids. 31 (11): 3260–3265. Bibcode:1988PhFl...31.3260K. doi:10.1063/1.866937.
  6. ^ Sakamoto, H.; Haniu, H. (1990). "A study on vortex shedding from spheres in uniform flow". Journal of Fluids Engineering. 112 (December): 386–392. Bibcode:1990ATJFE.112..386S. doi:10.1115/1.2909415. S2CID 15578514.
  7. ^ Sitti, Metin (2017). Mobile Microrobotics. The MIT Press. pp. 13–24. ISBN 9780262036436.
  8. ^ a b c Doutel, E.; Galindo-Rosales, F. J.; Campo-Deaño, L. (December 2, 2021). "Hemodynamics Challenges for the Navigation of Medical Microbots for the Treatment of CVDs". Materials. 14 (23): 7402. Bibcode:2021Mate...14.7402D. doi:10.3390/ma14237402. PMC 8658690. PMID 34885556.
  9. ^ Sanchez-Sanz, M.; Liñan, A.; Smoke, M. D.; Bennett, B. A. V. (July 16, 2009). "Influence of Strouhal number on pulsating methane–air coflow jet diffusion flames". Combustion Theory and Modelling. 14 (3): 453–478. doi:10.1080/13647830.2010.490048. S2CID 53640323.
  10. ^ a b c Taylor, Graham K.; Nudds, Robert L.; Thomas, Adrian L. R. (2003). "Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency". Nature. 425 (6959): 707–711. Bibcode:2003Natur.425..707T. doi:10.1038/nature02000. PMID 14562101. S2CID 4431906.
  11. ^ Corum, Jonathan (2003). "The Strouhal Number in Cruising Flight". Retrieved 2012-11-13– depiction of Strouhal number for flying and swimming animals{{cite web}}: CS1 maint: postscript (link)
  12. ^ a b c Taylor, G. K.; Nudds, R. L.; Thomas, A. L. R. (October 16, 2003). "Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency". Nature. 425 (6959): 707–711. Bibcode:2003Natur.425..707T. doi:10.1038/nature02000. PMID 14562101. S2CID 4431906. ProQuest 204520869.
  13. ^ a b Lapsansky, Anthony B.; Zatz, Daniel; Tobalske, Bret W. (June 30, 2020). "Alcids 'fly' at efficient Strouhal numbers in both air and water but vary stroke velocity and angle". eLife. 9. doi:10.7554/eLife.55774. PMC 7332295. PMID 32602463.
  14. ^ a b c d Wimer, N. T.; Lapointe, C.; Christopher, J. D.; Nigam, S. P.; Hayden, T. R. S.; Upadhye, A.; Strobel, M.; Rieker, G. B.; Hamlington, P. E. (May 21, 2020). "Scaling of the Puffing Strouhal Number for Buoyant Jets and Plumes". Journal of Fluid Mechanics. 895. arXiv:1904.01580. Bibcode:2020JFM...895A..26W. doi:10.1017/jfm.2020.271. S2CID 96428731.
  15. ^ a b Eloy, Cristophe (March 5, 2012). "Optimal Strouhal number for swimming animals". Journal of Fluids and Structures. 30: 205–218. arXiv:1102.0223. Bibcode:2012JFS....30..205E. doi:10.1016/j.jfluidstructs.2012.02.008. S2CID 56221298.

Read other articles:

Keuskupan ValdiviaDioecesis ValdiviensisDiócesis de ValdiviaKatedral Bunda dari RosarioLokasiNegaraChiliProvinsi gerejawiConcepciónMetropolitConcepciónStatistikLuas13.679 km2 (5.281 sq mi)Populasi- Total- Katolik(per 2010)297.000237,000 (79.8%)InformasiRitusRitus LatinPendirian14 Juni 1910 (113 tahun lalu)KatedralCatedral Nuestra Señora del RosarioPelindungBunda dari RosarioKepemimpinan kiniPausFransiskusUskup agungFernando Natalio Chomalí GaribAdminist...

 

Restaurant in Portland, Oregon, U.S. The GooseThe restaurant's exterior in 2022Restaurant informationEstablishedJune 7, 2014 (2014-06-07)Owner(s)Kristine CraineChefMatthew StaussFood type New Mexican Southwestern Tex-Mex Street address2725 SE Ankeny StreetCityPortlandCountyMultnomahStateOregonPostal/ZIP Code97214CountryUnited StatesCoordinates45°31′20″N 122°38′15″W / 45.5223°N 122.6376°W / 45.5223; -122.6376Seating capacity52Websitethegoosepd...

 

President of the United States from 1961 to 1963 For other uses, see John F. Kennedy (disambiguation). JFK, John Kennedy, and Jack Kennedy redirect here. For other uses, see JFK (disambiguation), John Kennedy (disambiguation), and Jack Kennedy (disambiguation). John F. KennedyOval Office portrait, 196335th President of the United StatesIn officeJanuary 20, 1961 – November 22, 1963Vice PresidentLyndon B. JohnsonPreceded byDwight D. EisenhowerSucceeded byLyndon B. JohnsonUnited S...

City in Texas, United StatesWarren City, TexasCityLocation of Warren City, TexasCoordinates: 32°33′13″N 94°54′9″W / 32.55361°N 94.90250°W / 32.55361; -94.90250CountryUnited StatesStateTexasCountiesGregg, UpshurArea[1] • Total1.75 sq mi (4.53 km2) • Land1.75 sq mi (4.53 km2) • Water0.00 sq mi (0.00 km2)Elevation371 ft (113 m)Population (2020) •...

 

Gouden KalfDiberikan kepadaFilm dan program televisi terbaikNegaraBelandaDipersembahkan olehFestival Film BelandaDiberikan perdana1981Situs webhttp://www.filmfestival.nl/en  Gouden Kalf adalah penghargaan di Festival Film Belanda yang diadakan setiap tahun di kota Utrecht. Pranala luar Golden Calf Winners 1981–2014 (dalam bahasa Belanda). Nederlands Film Festival. Diarsipkan dari versi asli tanggal 24 February 2016. Diakses tanggal 4 October 2019 – via Filmfestival.nl.  Para...

 

Legislature of the State of Israel For Beit Knesset, a Jewish place of worship, see Synagogue. For the Knesset neighborhood in Nachlaot, see Knesset Yisrael. The Knesset הכנסת‎الكنيست‎25th KnessetTypeTypeUnicameral LeadershipSpeakerAmir Ohana, Likud since 29 December 2022 Prime MinisterBenjamin Netanyahu, Likud since 29 December 2022 Leader of the OppositionYair Lapid, Yesh Atid since 2 January 2023[1] StructureSeats120Political groupsGovernment (6...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

Commuter rail service in Illinois Milwaukee District North LineEMD F40PH No. 120 leads an outbound train at DeerfieldOverviewService typeCommuter railStatusOperatingLocaleNorthern Chicago metropolitan areaPredecessorMilwaukee RoadCurrent operator(s)MetraRidership23,257 (Avg. Weekday 2014)[1]Annual ridership2,786,215 (2023)RouteTerminiUnion StationFox LakeStops22Distance travelled49.7 miles (80.0 km)Average journey time97 minutes, stopping at all stopsLine(s) usedC&M Subdivisi...

 

В Википедии есть статьи о других людях с такой фамилией, см. Чичваркин; Чичваркин, Евгений. Евгений Чичваркин В 2019 году Дата рождения 10 сентября 1974(1974-09-10) (49 лет) Место рождения Ленинград, РСФСР, СССР Гражданство  Россия →  Великобритания Род деятельности предпринимат...

国民阵线Barisan NasionalNational Frontباريسن ناسيونلபாரிசான் நேசனல்国民阵线标志简称国阵,BN主席阿末扎希总秘书赞比里署理主席莫哈末哈山总财政希山慕丁副主席魏家祥维纳斯瓦兰佐瑟古律创始人阿都拉萨成立1973年1月1日 (1973-01-01)[1]设立1974年7月1日 (1974-07-01)前身 联盟总部 马来西亚  吉隆坡 50480 秋傑区敦依斯迈路太子世贸中心(英�...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

 

Katy Perry. Berikut ini adalah daftar 50 akun papan atas dengan jumlah pengikut terbesar dalam jejaring media sosial Twitter.[1] 50 akun papan atas Peringkat Perubahan (bulanan) Nama akun Pemilik Pengikut Ratus) Negara 1. @katyperry Katy Perry 107  USA 2. @BarackObama Barack Obama 106  USA 3. @justinbieber Justin Bieber 106  CAN 4. @rihanna Rihanna 91  BAR 5. @taylorswift13 Taylor Swift 83  USA 6. @ladygaga Lady Gaga 79  USA 7. @Cristiano Cristiano Ronald...

  「习壳郎」和「习氏甲虫」均重定向至此。关于此甲蟲所映射的對象,请见「习近平」。关于习近平的其它称呼,请见「對習近平的負面稱呼」。 習氏狼條脊甲 科学分类 界: 动物界 Animalia 门: 节肢动物门 Arthropoda 纲: 昆虫纲 Insecta 目: 鞘翅目 Coleoptera 科: 步行蟲科 Carabidae 属: 狼條脊甲屬 Rhyzodiastes 种: 習氏狼條脊甲 R. xii 二名法 Rhyzodiastes xiiC. B. Wang, 2016[1...

 

Guardea komune di Italia Guardea (it) Tempat Negara berdaulatItaliaDaerah di ItaliaUmbraProvinsi di ItaliaProvinsi Terni NegaraItalia Ibu kotaGuardea PendudukTotal1.743  (2023 )GeografiLuas wilayah39,38 km² [convert: unit tak dikenal]Ketinggian387 m Berbatasan denganAlviano Amelia Avigliano Umbro Civitella d'Agliano Montecastrilli Montecchio Informasi tambahanKode pos05025 Zona waktuUTC+1 UTC+2 Kode telepon0744 ID ISTAT055015 Kode kadaster ItaliaE241 Lain-lainKota kembarGreccio Sit...

 

Disambiguazione – Se stai cercando altri significati, vedi Hathor (disambigua). Hathor «Vieni, farò per te la gioia al crepuscolo e la musica alla sera! O Hathor, tu sei esaltata nella chioma di Ra[1] perché il cielo ti ha dato la profonda notte e le stelle. [...] Adoriamo la Dorata quando brilla in cielo!» (Inno a Hathor[2]) Hathor o Ator[3] (dall'originale egizio: ḥwt-ḥr; che significa Casa di Horus, ellenizzato Ἅθωρ, Hathor[4]) è una divinit...

Stasiun Ryŏkp'o adalah sebuah stasiun kereta yang terletak di Ryŏkp'o-guyŏk, P'yŏngyang, Korea Utara.[1] Stasiun ini terletak di Jalur P'yŏngbu. Sebuah cabang jalur kereta menuju Rangrang terletak di stasiun ini. Referensi ^ Kokubu, Hayato, 将軍様の鉄道 (Shōgun-sama no Tetsudō), ISBN 978-4-10-303731-6 lbs Jalur Pyongbu Jalur Utama P'yŏngyang Taedonggang Ryŏkp'o Chunghwa Hŭkkyo Kindŭng Hwangju Ch'imch'on Ch'ŏngnyŏn Chŏngbang Sariwŏn Ch'ŏngnyŏn Sariwŏn Timur Pong...

 

2007 single by Papa RoachForeverSingle by Papa Roachfrom the album The Paramour Sessions ReleasedJanuary 8, 2007RecordedDecember 2005–May 2006 at the Paramour Mansion in Hollywood, CaliforniaGenreAlternative rockLength4:06LabelGeffenSongwriter(s) Jacoby Shaddix Tobin Esperance Jerry Horton Nathan Seright Producer(s)Howard BensonPapa Roach singles chronology ...To Be Loved (2006) Forever (2007) Hollywood Whore (2008) Forever is the second single from Californian rock band Papa Roach's fifth ...

 

السلام الرومانيمعلومات عامةالبداية 27 ق.م النهاية 180 المنطقة روما القديمة وصفها المصدر موسوعة بلوتو تعديل - تعديل مصدري - تعديل ويكي بيانات جزء من سلسلة مقالات عنالسياسة في روما القديمة الفترات المملكة الرومانية 753 – 509 ق م الجمهورية الرومانية 509 – 27 ق م الإمبراطورية الرومان...

نت بوكمعلومات عامةالنوع subnotebook (en) أهم التواريختاريخ الإصدار 2007[1] تعديل - تعديل مصدري - تعديل ويكي بيانات نت بوك سيلفانيا جي ميزو (Sylvania G Meso) يعمل بنظام أوبنتو نت بوك (بالإنجليزية: Netbook)‏ هو الاسم الذي يطلق بشكل عام على فئة من أجهزة الكمبيوتر المحمولة الصغيرة والخفيفة ورخي�...

 

Probability distribution Bell curve redirects here. For other uses, see Bell curve (disambiguation). Normal distribution Probability density functionThe red curve is the standard normal distribution. Cumulative distribution functionNotation N ( μ , σ 2 ) {\displaystyle {\mathcal {N}}(\mu ,\sigma ^{2})} Parameters μ ∈ R {\displaystyle \mu \in \mathbb {R} } = mean (location) σ 2 ∈ R > 0 {\displaystyle \sigma ^{2}\in \mathbb {R} _{>0}} = variance (...