Marangoni number

The Marangoni number (Ma) is, as usually defined, the dimensionless number that compares the rate of transport due to Marangoni flows, with the rate of transport of diffusion. The Marangoni effect is flow of a liquid due to gradients in the surface tension of the liquid. Diffusion is of whatever is creating the gradient in the surface tension. Thus as the Marangoni number compares flow and diffusion timescales it is a type of Péclet number.

The Marangoni number is defined as:

A common example is surface tension gradients caused by temperature gradients.[1] Then the relevant diffusion process is that of thermal energy (heat). Another is surface gradients caused by variations in the concentration of surfactants, where the diffusion is now that of surfactant molecules.

The number is named after Italian scientist Carlo Marangoni, although its use dates from the 1950s[1][2] and it was neither discovered nor used by Carlo Marangoni.

The Marangoni number for a simple liquid of viscosity with a surface tension change over a distance parallel to the surface, can be estimated as follows. Note that we assume that is the only length scale in the problem, which in practice implies that the liquid be at least deep. The transport rate is usually estimated using the equations of Stokes flow, where the fluid velocity is obtained by equating the stress gradient to the viscous dissipation. A surface tension is a force per unit length, so the resulting stress must scale as , while the viscous stress scales as , for the speed of the Marangoni flow. Equating the two we have a flow speed . As Ma is a type of Péclet number, it is a velocity times a length, divided by a diffusion constant, , Here this is the diffusion constant of whatever is causing the surface tension difference. So,

Marangoni number due to thermal gradients

A common application is to a layer of liquid, such as water, when there is a temperature difference across this layer. This could be due to the liquid evaporating or being heated from below. There is a surface tension at the surface of a liquid that depends on temperature, typically as the temperature increases the surface tension decreases. Thus if due to a small fluctuation temperature, one part of the surface is hotter than another, there will be flow from the hotter part to the colder part, driven by this difference in surface tension, this flow is called the Marangoni effect. This flow will transport thermal energy, and the Marangoni number compares the rate at which thermal energy is transported by this flow to the rate at which thermal energy diffuses.

For a liquid layer of thickness , viscosity and thermal diffusivity , with a surface tension which changes with temperature at a rate , the Marangoni number can be calculated using the following formula:[3]

When Ma is small thermal diffusion dominates and there is no flow, but for large Ma, flow (convection) occurs, driven by the gradients in the surface tension. This is called Bénard-Marangoni convection.

References

  1. ^ a b Pearson, J. R. A. (1958). "On convection cells induced by surface tension". Journal of Fluid Mechanics. 4 (5): 489–500. Bibcode:1958JFM.....4..489P. doi:10.1017/S0022112058000616. ISSN 0022-1120. S2CID 123404447.
  2. ^ Block, Myron J. (1956). "Surface Tension as the Cause of Bénard Cells and Surface Deformation in a Liquid Film". Nature. 178 (4534): 650–651. Bibcode:1956Natur.178..650B. doi:10.1038/178650a0. ISSN 0028-0836. S2CID 4273633.
  3. ^ Pr. Steven Abbott. "Marangoni Number Calculator". stevenabbott.co.uk. Retrieved 2 March 2019.

Read other articles:

Cerek kepiting Dromas ardeola Status konservasiRisiko rendahIUCN22694081 TaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoCharadriiformesFamiliDromadidaeGenusDromasSpesiesDromas ardeola Distribusi lbs Burung-Cerek Kepiting atau Cerek Kepiting ( Dromas ardeola ) adalah burung yang berkerabat dengan burung perandai, namun cukup khas sehingga layak untuk dijadikan famili Dromadidae . Hubungannya dengan Charadriiformes tidak jelas, beberapa menganggapnya berkerabat dekat dengan wili-wili, atau ...

 

 

Kwartir Daerah (Kwarda) adalah satuan organisasi yang mengelola Gerakan Pramuka di tingkat Provinsi. Berdasarkan tingkatan/wilayahnya, Kwarda berkedudukan di masing-masing ibu kota Provinsi. Pengurus Kwarda diketuai oleh Ketua Kwarda (disingkat Ka Kwarda). Pengurus Kwartir Daerah [1] Ketua Kwarda ditetapkan oleh Musyawarah Daerah (Musda) untuk masa bakti berikutnya, dan dilantik oleh Ketua Presidium Pimpinan Musda. Pengurus Kwarda dibentuk oleh Musda melalui tim formatur, yang dituang...

 

 

Салоникский фронт Первой мировой войныОсновной конфликт: Первая мировая война Войска Антанты. Слева направо: солдаты из Индокитая, Франции, Сенегала, Британии, Российской империи, Италии, Сербии, Греции и Индии. Дата 27 октября 1915 — ноябрь 1918 Место Сербия, Черногория, Грец�...

List of events ← 2020 2019 2018 2021 in Indonesia → 2022 2023 2024 Centuries: 19th 20th 21st Decades: 2000s 2010s 2020s See also: History of Indonesia Timeline of Indonesian history List of years in Indonesia 2021 (MMXXI) was a common year starting on Friday of the Gregorian calendar, the 2021st year of the Common Era (CE) and Anno Domini (AD) designations, the 21st year of the 3rd millennium and the 21st century, and the 2nd year of the 2020s decade. Calendar year T...

 

 

Willy Sagnol Sagnol bermain untuk Bayern tahun 2006.Informasi pribadiNama lengkap William SagnolTanggal lahir 18 Maret 1977 (umur 47)Tempat lahir Saint-Étienne, PrancisTinggi 1,82 m (5 ft 11+1⁄2 in)Posisi bermain Bek kananKarier junior1990–1995 Saint-ÉtienneKarier senior*Tahun Tim Tampil (Gol)1995–1997 Saint-Étienne 46 (1)1997–2000 Monaco 71 (0)2000–2009 Bayern München 184 (7)2003–2008 Bayern München II 3 (0)Total 304 (8)Tim nasional2000–2008 Pranci...

 

 

Kota San Pablo component city Dinamakan berdasarkanPaulus dari Thebes Tempat Negara berdaulatFilipinaIsland group of the PhilippinesLuzonRegion di FilipinaCalabarzonProvinsi di FilipinaLaguna NegaraFilipina Pembagian administratifVI-D VII-B VII-C VII-D Bagong Bayan Concepcion Del Remedio Dolores San Buenaventura San Crispin San Diego San Francisco San Isidro San Jose San Lorenzo San Lucas 1 San Lucas 2 San Mateo San Pedro Santa Catalina Santa Isabel Santa Veronica Santo Angel PendudukTotal285...

Peta menunjukan lokasi Valencia City Untuk kegunaan lain, lihat Valencia. Valencia City adalah kota yang terletak di provinsi Bukidnon, Filipina. Pada tahun 2000, kota ini memiliki populasi sebesar 162.745 jiwa. Pembagian wilayah Valencia City terbagi menjadi 31 barangay, yaitu: Bagontaas Banlag Barobo Batangan Catumbalon Colonia Concepcion Dagat-Kidavao Guinoyuran Kahapunan Laligan Lilingayon Lourdes Lumbayao Lumbo Lurogan Maapag Mabuhay Mailag Mt. Nebo Nabago Pinatilan Poblacion San Carlos ...

 

 

Video games Template‑class Video games portalThis template is within the scope of WikiProject Video games, a collaborative effort to improve the coverage of video games on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.Video gamesWikipedia:WikiProject Video gamesTemplate:WikiProject Video gamesvideo game articlesTemplateThis template does not require a rating on the project's quality scale.Summary of...

 

 

МифологияРитуально-мифологическийкомплекс Система ценностей Сакральное Миф Мономиф Теория основного мифа Ритуал Обряд Праздник Жречество Мифологическое сознание Магическое мышление Низшая мифология Модель мира Цикличность Сотворение мира Мировое яйцо Мифическое �...

Polish speedway rider Tomasz GollobBorn (1971-04-11) 11 April 1971 (age 53)Bydgoszcz, PolandNationalityPolishWebsitewww.gollobracing.comCareer historyPoland1988, 1990-2003Polonia Bydgoszcz1989Wybrzeże Gdańsk2004-2007Unia Tarnów2008-2012Stal Gorzów2013-2014KS Toruń2015-2016GKM GrudziądzGreat Britain1998-2000Ipswich WitchesSweden1997Valsarna2001-2010Västervik2011-2013HammarbyDenmark2009Esbjerg Speedway Grand Prix statisticsStarts163Podiums53 (22-10-21)Finalist66 timeWinner22 timesIn...

 

 

Japan Template‑class Japan portalThis template is within the scope of WikiProject Japan, a collaborative effort to improve the coverage of Japan-related articles on Wikipedia. If you would like to participate, please visit the project page, where you can join the project, participate in relevant discussions, and see lists of open tasks. Current time in Japan: 02:57, May 10, 2024 (JST, Reiwa 6) (Refresh)JapanWikipedia:WikiProject JapanTemplate:WikiProject JapanJapan-related articlesTemplate...

 

 

Hubungan Israel–Rusia Israel Rusia Kedubes Israel di Moskwa, Rusia. Benjamin Netanyahu dan Vladimir Putin pada 2018. Hubungan Israel–Rusia merujuk kepada hubungan luar negeri bilateral antara dua negara, Israel dan Rusia. Rusia memiliki sebuah kedubes di Tel Aviv dan sebuah konsulat di Haifa. Israel memiliki sebuah kedubes di Moskwa dan sebuah konjen di Yekaterinburg. Referensi Pranala luar Wikimedia Commons memiliki media mengenai Relations of Israel and Russia. Embassy of Israel in Mos...

坐标:43°11′38″N 71°34′21″W / 43.1938516°N 71.5723953°W / 43.1938516; -71.5723953 此條目需要补充更多来源。 (2017年5月21日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:新罕布什尔州 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源...

 

 

Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна  УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі ор...

 

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

  هذه المقالة عن المستعمرة البرتغالية التاريخية (1502-1769) والمصنفة كموقع للتراث العالمي. لمدينة الجديدة الراهنة، طالع الجديدة (المغرب). للمنتجع السياحي، طالع مازاغان بيتش آند جولف ريزورت. مازاغان Mazagão مدينة مازاكان البرتغالية (الجديدة) موقع اليونيسكو للتراث العالمي غرف...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2009 BWF World Championships – Mixed doubles – news · newspapers · books · scholar · JSTOR (November 2018) (Learn how and when to remove this message) Mixed doubles at the 2009 BWF World ChampionshipsVenueGachibowli Indoor StadiumLocationHyderabad, India...

 

 

الدليل التجريبي هو المعلومات المستقاة من الحواس، وتحديدًا عن طريق الملاحظة وتوثيق الأنماط والسلوك عبر التجريب. يأتي المصطلح من الكلمة اليونانية إمبيريا التي تعني تجربة.[1] من الشائع في الفلسفة، ما بعد إيمانويل كانط، أن يُطلق على المعرفة المكتسبة اسم المعرفة البَعدية ...

Township in Indiana, United StatesJackson TownshipTownshipRolling hills of Jackson TownshipCoordinates: 41°33′32″N 86°58′46″W / 41.55889°N 86.97944°W / 41.55889; -86.97944CountryUnited StatesStateIndianaCountyPorterGovernment • TypeIndiana townshipArea • Total26.97 sq mi (69.86 km2) • Land26.89 sq mi (69.64 km2) • Water0.09 sq mi (0.22 km2)Elevation[1]830&#...

 

 

Invasi Sekutu ke SisiliaBagian dari Perang Dunia IITanggal9 Juli – 17 Agustus 1943LokasiSisilia, ItaliaHasil Kemenangan SekutuPihak terlibat  Britania Raya Amerika Serikat Kanada Italia Jerman NaziTokoh dan pemimpin Dwight D. Eisenhower Harold Alexander Bernard Montgomery George S. Patton Albert Kesselring Alfredo Guzzoni Fridolin von Senger und Etterlin lbsPertempuran Mediterania Malta Club Run¹ Konvoi Malta¹ Espero ¹² Mers-el-Kébir Calabria¹² Tanjung Spada Hurry ¹ Tanjung...