Steviol glycosides from Stevia rebaudiana have been reported to be between 30 and 320 times sweeter than sucrose,[2] although there is some disagreement in the technical literature about these numbers.[1][3] They are heat-stable, pH-stable, and do not ferment.[2]
Steviol glycosides do not induce a glycemic response when ingested, because humans cannot metabolize stevia.[4][5] The acceptable daily intake (ADI) for steviol glycosides, expressed as steviol equivalents, has been established to be 4 mg/kg body weight/day, and is based on no observed effects of a 100 fold higher dose in a rat study.[6]
The last three are present only in minute quantities, and rebaudioside B has been claimed to be a byproduct of the isolation technique.[2] A commercial steviol glycoside mixture extracted from the plant was found to have about 80% stevioside, 8% rebaudioside A, and 0.6% rebaudioside C.[3]
The Chinese plant Rubus chingii produces rubusoside, a steviol glycoside not found in Stevia.[1] According to the EU Stevia Regulation of 13 July 2021, however, rubusoside is one of the eleven major glycoside components of Stevia,
extracted from the leaves of the Stevia rebaudiana.[7]
Stevioside and rebaudioside A were first isolated in 1931 by French chemists, Bridel and Lavielle.[8] Both compounds have only glucose subgroups: stevioside has two linked glucose molecules at the hydroxyl site, whereas rebaudioside A has three, with the middle glucose of the triplet connected to the central steviol structure.
Early sensory tests led to claims that rebaudioside A was 150 to 320 times sweeter than sucrose, stevioside was 110 to 270 times sweeter, rebaudioside C 40 to 60 times sweeter, and dulcoside A 30 times sweeter.[2] However, a more recent evaluation found rebaudoside A to be about 240 times sweeter, and stevioside about 140 times.[1] Rebaudioside A also had the least bitterness and aftertaste.[2] The relative sweetness seems to vary with concentration: a mix of steviol glycosides in the natural proportions was found to be 150 times sweeter than sucrose when matching a 3% sucrose solution, but only 100 times sweeter when matching a 10% sucrose solution.[3]
Upon forming IPP and DMAPP, the diterpene GGPP is formed by via head-to-tail addition by an Sn1 mechanism. Elongation begins when IPP and DMAPP form Geranyl Pyrophosphate (GPP). GPP elongates through the same Sn1 mechanism to create Farnesyl Pyrophosphate (FPP), and FPP elongates to form GGPP.
With the formation of GGPP cyclization occurs by enzymes copalyl diphosphate synthase (CDPS) and Kuarene Synthase (KS) to form -(-)Kuarene.[12] Several oxidation steps then occur to form steviol.
Steviol glycoside biosynthesis then follows several modifications from steviol that regioselectively select for sugar molecules to be placed.[13] Once these molecules are fully glycosylated, the glycosides are then stored in vacuoles.[1]
^ abcH.M.A.B. Cardello; M.A.P.A. Da Silva; M.H. Damasio (1999). "Measurement of the relative sweetness of stevia extract, aspartame and cyclamate/saccharin blend as compared to sucrose at different concentrations". Plant Foods for Human Nutrition. 54 (2): 119–129. doi:10.1023/A:1008134420339. PMID10646559. S2CID38718610.
^Huxtable, R.J., 2002. Pharmacology and toxicology of stevioside, rebaudioside A, and steviol. In: Kinghorn, A.D. (Ed.), Stevia: The Genus Stevia. Taylor and Francis, London and New York, pp.160–177.
^Lichtenhalter, H.K., 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. PlantMol. Biol. 50, 47–65.