2-Aminoethoxydiphenyl borate (2-APB) is a chemical that acts to inhibit both IP3 receptors[1] and TRP channels (although it activates TRPV1, TRPV2, & TRPV3 at higher concentrations).[2][3] In research it is used to manipulate intracellular release of calcium ions (Ca2+) and modify TRP channel activity, although the lack of specific effects make it less than ideal under some circumstances. Additionally, there is evidence that 2-APB acts directly to inhibit gap junctions made of connexin.[4] Increasing evidence showed that 2-APB is a powerful modifier of store-operated calcium channels (SOC) function, low concentration of 2-APB can enhance SOC while high concentration induces a transient increase followed by complete inhibition.[5][6][7]
References
^Diver, J. M.; Sage, S. O.; Rosado, J. A. (2001-11-01). "The inositol trisphosphate receptor antagonist 2-aminoethoxydiphenylborate (2-APB) blocks Ca2+ entry channels in human platelets: cautions for its use in studying Ca2+ influx". Cell Calcium. 30 (5): 323–329. doi:10.1054/ceca.2001.0239. ISSN0143-4160. PMID11733938.
^Bai, Donglin; del Corsso, Cristiane; Srinivas, Miduturu; Spray, David C. (2006-12-01). "Block of specific gap junction channel subtypes by 2-aminoethoxydiphenyl borate (2-APB)". The Journal of Pharmacology and Experimental Therapeutics. 319 (3): 1452–1458. doi:10.1124/jpet.106.112045. ISSN0022-3565. PMID16985167. S2CID2375567.
^Ma HT, et al. (2000) Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287:1647–1651.
^Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP 3 receptors. J Physiol 536:3–19.
^Ma HT, Venkatachalam K, Parys JB, Gill DL (2002) Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. J Biol Chem 277:6915–6922.