Stefan problem

In mathematics and its applications, particularly to phase transitions in matter, a Stefan problem is a particular kind of boundary value problem for a system of partial differential equations (PDE), in which the boundary between the phases can move with time. The classical Stefan problem aims to describe the evolution of the boundary between two phases of a material undergoing a phase change, for example the melting of a solid, such as ice to water. This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases (in the classical problem) the temperature is set to the phase change temperature. To close the mathematical system a further equation, the Stefan condition, is required. This is an energy balance which defines the position of the moving interface. Note that this evolving boundary is an unknown (hyper-)surface; hence, Stefan problems are examples of free boundary problems.

Analogous problems occur, for example, in the study of porous media flow, mathematical finance and crystal growth from monomer solutions.[1]

Historical note

The problem is named after Josef Stefan (Jožef Stefan), the Slovenian physicist who introduced the general class of such problems around 1890 in a series of four papers concerning the freezing of the ground and the formation of sea ice.[2] However, some 60 years earlier, in 1831, an equivalent problem, concerning the formation of the Earth's crust, had been studied by Lamé and Clapeyron. Stefan's problem admits a similarity solution, this is often termed the Neumann solution, which was allegedly presented in a series of lectures in the early 1860s.

A comprehensive description of the history of Stefan problems may be found in Rubinstein.[3]

Premises to the mathematical description

From a mathematical point of view, the phases are merely regions in which the solutions of the underlying PDE are continuous and differentiable up to the order of the PDE. In physical problems such solutions represent properties of the medium for each phase. The moving boundaries (or interfaces) are infinitesimally thin surfaces that separate adjacent phases; therefore, the solutions of the underlying PDE and its derivatives may suffer discontinuities across interfaces.

The underlying PDEs are not valid at the phase change interfaces; therefore, an additional condition—the Stefan condition—is needed to obtain closure. The Stefan condition expresses the local velocity of a moving boundary, as a function of quantities evaluated at either side of the phase boundary, and is usually derived from a physical constraint. In problems of heat transfer with phase change, for instance, conservation of energy dictates that the discontinuity of heat flux at the boundary must be accounted for by the rate of latent heat release (which is proportional to the local velocity of the interface).

The regularity of the equation has been studied mainly by Luis Caffarelli[4][5] and further refined by work of Alessio Figalli, Xavier Ros-Oton and Joaquim Serra[6][7]

Mathematical formulation

The one-dimensional one-phase Stefan problem

The one-phase Stefan problem is based on an assumption that one of the material phases may be neglected. Typically this is achieved by assuming that a phase is at the phase change temperature and hence any variation from this leads to a change of phase. This is a mathematically convenient approximation, which simplifies analysis whilst still demonstrating the essential ideas behind the process. A further standard simplification is to work in non-dimensional format, such that the temperature at the interface may be set to zero and far-field values to or .

Consider a semi-infinite one-dimensional block of ice initially at melting temperature for . The most well-known form of Stefan problem involves melting via an imposed constant temperature at the left hand boundary, leaving a region occupied by water. The melted depth, denoted by , is an unknown function of time. The Stefan problem is defined by

  • The heat equation:
  • A fixed temperature, above the melt temperature, on the left boundary:
  • The interface at the melting temperature is set to
  • The Stefan condition: where is the Stefan number, the ratio of latent to specific sensible heat (where specific indicates it is divided by the mass). Note this definition follows naturally from the nondimensionalisation and is used in many texts [8][9] however it may also be defined as the inverse of this.
  • The initial temperature distribution:
  • The initial depth of the melted ice block:
The Neumann solution, obtained by using self-similar variables, indicates that the position of the boundary is given by where satisfies the transcendental equation The temperature in the liquid is then given by

Applications

Apart from modelling melting of solids, Stefan problem is also used as a model for the asymptotic behaviour (in time) of more complex problems. For example, Pego[10] uses matched asymptotic expansions to prove that Cahn-Hilliard solutions for phase separation problems behave as solutions to a non-linear Stefan problem at an intermediate time scale. Additionally, the solution of the Cahn–Hilliard equation for a binary mixture is reasonably comparable with the solution of a Stefan problem.[11] In this comparison, the Stefan problem was solved using a front-tracking, moving-mesh method with homogeneous Neumann boundary conditions at the outer boundary. Also, Stefan problems can be applied to describe phase transformations other than solid-fluid or fluid-fluid.[12]

Application of Stefan problem to metal crystallization in electrochemical deposition of metal powders was envisaged by Călușaru [13]

The Stefan problem also has a rich inverse theory; in such problems, the melting depth (or curve or hyper-surface) s is the known datum and the problem is to find u or f.[14]

Advanced forms of Stefan problem

The classical Stefan problem deals with stationary materials with constant thermophysical properties (usually irrespective of phase), a constant phase change temperature and, in the example above, an instantaneous switch from the initial temperature to a distinct value at the boundary. In practice thermal properties may vary and specifically always do when the phase changes. The jump in density at phase change induces a fluid motion: the resultant kinetic energy does not figure in the standard energy balance. With an instantaneous temperature switch the initial fluid velocity is infinite, resulting in an initial infinite kinetic energy. In fact the liquid layer is often in motion, thus requiring advection or convection terms in the heat equation. The melt temperature may vary with size, curvature or speed of the interface. It is impossible to instantaneously switch temperatures and then difficult to maintain an exact fixed boundary temperature. Further, at the nanoscale the temperature may not even follow Fourier's law.

A number of these issues have been tackled in recent years for a variety of physical applications. In the solidification of supercooled melts an analysis where the phase change temperature depends on the interface velocity may be found in Font et al.[15] Nanoscale solidification, with variable phase change temperature and energy/density effects are modelled in.[16][17] Solidification with flow in a channel has been studied, in the context of lava[18] and microchannels,[19] or with a free surface in the context of water freezing over an ice layer.[20][21] A general model including different properties in each phase, variable phase change temperature and heat equations based on either Fourier's law or the Guyer-Krumhansl equation is analysed in.[22]

See also

Notes

  1. ^ Applied partial differential equations. Ockendon, J. R. (Rev. ed.). Oxford: Oxford University Press. 2003. ISBN 0-19-852770-5. OCLC 52486357.{{cite book}}: CS1 maint: others (link)
  2. ^ (Vuik 1993, p. 157).
  3. ^ RUBINSTEIN, L. I. (2016). STEFAN PROBLEM. [Place of publication not identified]: American Mathematical Society. ISBN 978-1-4704-2850-1. OCLC 973324855.
  4. ^ Caffarelli, Luis A. (1977). "The regularity of free boundaries in higher dimensions". Acta Mathematica. 139 (none): 155–184. doi:10.1007/BF02392236. ISSN 0001-5962. S2CID 123660704.
  5. ^ CAFFARELLI, LUIS A. (1978). "Some Aspects of the One-Phase Stefan Problem". Indiana University Mathematics Journal. 27 (1): 73–77. doi:10.1512/iumj.1978.27.27006. ISSN 0022-2518. JSTOR 24891579.
  6. ^ Figalli, Alessio; Ros-Oton, Xavier; Serra, Joaquim (2024). "The singular set in the Stefan problem". Journal of the American Mathematical Society. 37 (2): 305–389. arXiv:2103.13379. doi:10.1090/jams/1026. MR 4695505.
  7. ^ Rorvig, Mordechai (2021-10-06). "Mathematicians Prove Melting Ice Stays Smooth". Quanta Magazine. Retrieved 2021-10-08.
  8. ^ Davis, Stephen H., 1939-. Theory of solidification. Cambridge. ISBN 978-0-511-01924-1. OCLC 232161077.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  9. ^ Fowler, A. C. (Andrew Cadle), 1953- (1997). Mathematical models in the applied sciences. Cambridge: Cambridge University Press. ISBN 0-521-46140-5. OCLC 36621805.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  10. ^ R. L. Pego. (1989). Front Migration in the Nonlinear Cahn-Hilliard Equation. Proc. R. Soc. Lond. A.,422:261–278.
  11. ^ Vermolen, F. J.; Gharasoo, M. G.; Zitha, P. L. J.; Bruining, J. (2009). "Numerical Solutions of Some Diffuse Interface Problems: The Cahn–Hilliard Equation and the Model of Thomas and Windle". International Journal for Multiscale Computational Engineering. 7 (6): 523–543. doi:10.1615/IntJMultCompEng.v7.i6.40.
  12. ^ Alvarenga HD, Van de Putter T, Van Steenberge N, Sietsma J, Terryn H (Apr 2009). "Influence of Carbide Morphology and Microstructure on the Kinetics of Superficial Decarburization of C-Mn Steels". Metallurgical and Materials Transactions A. 46 (1): 123–133. Bibcode:2015MMTA...46..123A. doi:10.1007/s11661-014-2600-y. S2CID 136871961.
  13. ^ A. Călușaru, Electrochemical Deposition of Metal Powders, Elsevier, Amsterdam,1978.
  14. ^ (Kirsch 1996).
  15. ^ Font, F.; Mitchell, S. L.; Myers, T. G. (2013-07-01). "One-dimensional solidification of supercooled melts". International Journal of Heat and Mass Transfer. 62: 411–421. doi:10.1016/j.ijheatmasstransfer.2013.02.070. hdl:2072/205484. ISSN 0017-9310.
  16. ^ Myers, T. G. (2016-08-01). "Mathematical modelling of phase change at the nanoscale". International Communications in Heat and Mass Transfer. 76: 59–62. doi:10.1016/j.icheatmasstransfer.2016.05.005. ISSN 0735-1933.
  17. ^ Font, F.; Myers, T. G.; Mitchell, S. L. (February 2015). "A mathematical model for nanoparticle melting with density change". Microfluidics and Nanofluidics. 18 (2): 233–243. doi:10.1007/s10404-014-1423-x. ISSN 1613-4982. S2CID 54087370.
  18. ^ Lister, J.R. (1994). "The solidification of buoyancy-driven flow in a flexible-walled channel. Part 1. Constant-volume release". Journal of Fluid Mechanics. 272: 21–44. Bibcode:1994JFM...272...21L. doi:10.1017/S0022112094004362. S2CID 124068245.
  19. ^ Myers, T. G.; Low, J. (October 2011). "An approximate mathematical model for solidification of a flowing liquid in a microchannel". Microfluidics and Nanofluidics. 11 (4): 417–428. doi:10.1007/s10404-011-0807-4. hdl:2072/169268. ISSN 1613-4982. S2CID 97060677.
  20. ^ Myers, T. G.; Charpin, J. P. F.; Chapman, S. J. (August 2002). "The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface". Physics of Fluids. 14 (8): 2788–2803. Bibcode:2002PhFl...14.2788M. doi:10.1063/1.1488599. hdl:2117/102903. ISSN 1070-6631.
  21. ^ Myers, T.G.; Charpin, J.P.F. (December 2004). "A mathematical model for atmospheric ice accretion and water flow on a cold surface". International Journal of Heat and Mass Transfer. 47 (25): 5483–5500. doi:10.1016/j.ijheatmasstransfer.2004.06.037.
  22. ^ Myers, T. G.; Hennessy, M. G.; Calvo-Schwarzwälder, M. (2020-03-01). "The Stefan problem with variable thermophysical properties and phase change temperature". International Journal of Heat and Mass Transfer. 149: 118975. arXiv:1904.05698. doi:10.1016/j.ijheatmasstransfer.2019.118975. hdl:2072/445741. ISSN 0017-9310. S2CID 115147121.

References

Historical references

Scientific and general references

Read other articles:

First printed editions of a manuscript Main article: Editio princeps In classical scholarship, the editio princeps (plural: editiones principes) of a work is the first printed edition of the work, that previously had existed only in inscriptions or manuscripts, which could be circulated only after being copied by hand. The following is a list of Latin literature works. Latin works 15th century Date Author, Work Printer Location Comment 1453-54[1] Aelius Donatus, Ars minor[2]&#...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Lifuka Island AirportSalote Pilolevu AirportIATA: HPAICAO: NFTL HPALocation of airport in TongaInformasiJenisPublicPengelolaMinistry of Civil AviationLokasiLifuka, Haʻapai, TongaKetinggian dpl9[1] mdplKoordinat19°46′36″S 1...

 

Katedral TromsøGereja Katedral Bunda Maria di TromsøVår Frue domkirkeKatedral Tromsø, 2019LokasiTromsøNegara NorwegiaDenominasiGereja Katolik RomaAdministrasiKeuskupanPrelatur Teritorial Tromsø Katedral Bunda Maria[1] (bahasa Norwegia: Vår Frue domkirke) juga disebut Gereja Bunda Maria[2] adalah sebuah gereja katedral Katolik yang terletak di kota Tromsø, Norwegia,[3] yang menjadi pusat kedudukan dan takhta bagi prelatur dengan nama yang sama, yaitu Pr...

BIOS, singkatan dari Basic Input/Output System, dalam sistem komputer IBM PC atau kompatibelnya (komputer yang berbasis keluarga prosesor Intel x86) merujuk kepada kumpulan rutin perangkat lunak yang mampu melakukan hal-hal berikut: Inisialisasi (penyalaan) serta pengujian terhadap perangkat keras (dalam proses yang disebut dengan Power On Self Test, POST) Memuat dan menjalankan sistem operasi Mengatur beberapa konfigurasi dasar dalam komputer (tanggal, waktu, konfigurasi media penyimpanan, k...

 

Revolusi SaurBagian dari Perang Dingin, asal mula Perang di Afghanistan, dan awal dari Perang Soviet–AfghanDi luar gerbang Istana Presiden di Kabul (Arg), hari setelah revolusi Saur pada 28 April 1978Tanggal27–28 April 1978(1 hari)LokasiAfghanistanHasil Kemenangan PDPA Pelengseran dan pembunuhan Mohammed Daoud Khan serta keluarganya Pembersihan dan Pembuhan pendukung Khan [2] Jatuhnya Republik Afghanistan Pembentukan Republik Demokratik Afghanistan Invervensi militer di Afgha...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Alexandria, Louisiana – news · newspapers · books · scholar · JSTOR (February 2022) (Learn how and when to remove this template message) City in Louisiana, United StatesAlexandriaCityCity of AlexandriaWide view of downtown AlexandriaNickname: Alex (typical...

Association football competition for women's national teams in the Arab world Football tournamentArab Women's CupThe official logoOrganising bodyUAFAFounded2006; 18 years ago (2006)RegionArab world (UAFA)Number of teams7Current champions Jordan (1st title)Most successful team(s) Algeria Jordan(1 title each)Websiteuafaonline.com 2021 Arab Women's Cup Tournaments 2006 2021 The Arab Women's Cup (Arabic: كأس العرب للسيدات) is an international fo...

 

Cycling at the2012 Summer OlympicsList of cyclistsRoad cyclingRoad racemenwomenTime trialmenwomenTrack cyclingSprintmenwomenTeam sprintmenwomenKeirinmenwomenTeam pursuitmenwomenOmniummenwomenMountain bikingCross-countrymenwomenBMXBMXmenwomenQualificationvte This is a list of all cyclists who competed at the 2012 Summer Olympics in London, United Kingdom. A total of 505 cyclists from 74 countries competed in the 18 cycling events in the disciplines: BMX, mountain biking, road cycling, and tra...

 

Pemberian sumbangan kepada orang miskin pada Natal 1935 Di Jerman Nazi, sebuah upaya dibuat untuk merayakan Natal yang sejalan dengan ideologi Nazi. Yesus yang berasal dari bangsa Yahudi dan perayaan kelahirannya sebagai Mesias Yahudi berlawanan dengan kepercayaan rasial Nazi. Antara 1933 dan 1945, para pejabat pemerintahan berupaya untuk menghapus aspek-aspek Natal dari perayaan sipil dan lebih berkonsentrasi pada aspek-aspek perayaan pra-Kristen. Lagu-lagu dan dekorasi disekularisasikan. Na...

Pour les articles homonymes, voir Cohl. Mélanie Cohl Données clés Surnom Kelly Logan Nom de naissance Mélanie Picron Naissance 4 janvier 1982 (42 ans)Tournai, Belgique Activité principale Chanteuse Genre musical Pop, chanson française, ballade, variété Instruments Violon Années actives 1998 - 2005 Labels AMC, Epic, EMI modifier Mélanie Cohl, de son vrai nom Mélanie Picron, est une chanteuse belge née le 4 janvier 1982 à Tournai. Biographie Mélanie Cohl apprend à jouer du ...

 

French architect Anne Démians d'ArchimbaudBornColmar, FranceNationalityFrenchAlma materÉcole nationale supérieure d'architecture de VersaillesNotable workQuai Ouest, ESPCI Nobel School, Douai law courts, hotel and tourism high school of GuyancourtWebsitewww.annedemians.com Anne Démians d'Archimbaud is a French architect who opened her first agency in 1995. In 2003, she established Architectures Anne Démians in Montreuil, near Paris. The agency has designed office buildings, a freigh...

 

Former constituency of the Indian parliament in Tamil Nadu, India SivakasiFormer Lok Sabha constituencyConstituency detailsCountryIndiaRegionSouth IndiaStateTamil NaduEstablished1967Abolished2008ReservationNone Sivakasi was a Lok Sabha constituency in India[1] which existed until the 2004 Lok sabha elections. It was converted into Virudhunagar constituency after delimitation in 2008. Assembly segments Sivakasi Lok Sabha constituency was composed of the following assembly segments:[...

NewportRydeBradingCowesEast CowesSandownShanklinVentnorYarmouthclass=notpageimage| Towns on the Isle of Wight This is a list of towns and villages in the county of Isle of Wight, England. Towns There are nine main towns, most located along the north and east coasts. By greater area population, Ryde is the largest with a population of 32,072. Newport is the centrally located county town, with an area population of 25,496. Most settlements link to Newport by road, which is a hub for island ser...

 

مرقس السابع معلومات شخصية مكان الميلاد أوكسيرينخوس الوفاة مايو 18, 1769إيالة مصر مكان الدفن كنيسة أبو سيفين  الإقامة كنيسة العذراء المغيثة  مواطنة مصر  الحياة العملية المهنة قسيس  اللغة الأم القبطية  اللغات اللهجة المصرية  تعديل مصدري - تعديل   قداسة البابا ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) جورج غريفين   معلومات شخصية الميلاد 26 يونيو 1992 (32 سنة)  أكسفورد  مواطنة المملكة المتحدة  الحياة العملية المهنة لاعب دوري الرغبي  اللغات الإنجليزي...

Remington SteelePembuatRichard Butler, Michael GleasonPemeranStephanie Zimbalist, Pierce BrosnanNegara asalAmerika SerikatJmlh. episode94ProduksiDurasi60 menitRilis asliJaringanNBCRilis1 Oktober 1982 –17 Februari 1987 Remington Steele adalah serial televisi Amerika Serikat yang pertama ditayangkan jaringan televisi NBC dari 1982 sampai 1987. Acara ini dibintangi oleh Stephanie Zimbalist sebagai Laura Holt, seorang detektif swasta yang tidak mendapat client karena ia seorang wanita. Ia...

 

 Hipoclorito de sodio Nombre IUPAC HipoclorosoGeneralOtros nombres Hipoclorito sódicoFórmula estructural Fórmula molecular NaClOIdentificadoresNúmero CAS 7681-52-9[1]​ChEBI 32146ChEMBL CHEMBL1334078ChemSpider 22756PubChem 24340UNII DY38VHM5ODKEGG D01711 InChIInChI=InChI=1S/ClO.Na/c1-2;/q-1;+1Key: SUKJFIGYRHOWBL-UHFFFAOYSA-N Propiedades físicasApariencia Verde (líquido, diluido). Blanco (Sólido)Densidad 1110 kg/m³; 1,11 g/cm³Masa molar 74,44 g/molPunto...

 

ジェホロプテルス 生息年代: 135 Ma PreЄ Є O S D C P T J K Pg N ↓ 保全状況評価 絶滅(化石) 地質時代 約1億3500万年前(中生代白亜紀前期オーテリーブ期) 分類 ドメイン : 真核生物 Eukaryota 界 : 動物界 Animalia 門 : 脊索動物門 Chordata 亜門 : 脊椎動物亜門 Vertebrata 綱 : 爬虫綱 Reptilia 亜綱 : 双弓亜綱 Diapsida 下綱 : 主竜形下綱 Archosauromorpha 階級なし : (未整理[1])主�...

Naples FC Généralités Nom complet Naples Football Club Noms précédents Naples Football & Cricket Club Fondation 1904 Disparition 1922 Couleurs Rayures bleues et célestes Stade Stadio San Paolo Maillots Domicile modifier Le Naples Foot-Ball Club est un club de football italien basé à Naples, fondé en 1904 et disparu en 1922, ancêtre de la Società Sportiva Calcio Napoli. Histoire Le club a été fondé en 1904 sous le nom de Naples Foot-Ball & Cricket Club par le marin angla...

 

Polish city state (1815–1846) This article is about the real-life city-state from 1815–1846. For the tabletop role-playing game, see The Free City of Krakow. Free, Independent, and Strictly Neutral City of Cracow with its TerritoryWolne, Niepodległe i Ściśle Neutralne Miasto Kraków i jego Okręg (Polish)1815–1846 Flag Coat of arms Location of the Free, Independent, and Strictly Neutral City of Cracow with its Territory within EuropeTerritory of the Free, Independent, and Strict...