Square root of a 2 by 2 matrix

A square root of a 2×2 matrix M is another 2×2 matrix R such that M = R2, where R2 stands for the matrix product of R with itself. In general, there can be zero, two, four, or even an infinitude of square-root matrices. In many cases, such a matrix R can be obtained by an explicit formula.

Square roots that are not the all-zeros matrix come in pairs: if R is a square root of M, then −R is also a square root of M, since (−R)(−R) = (−1)(−1)(RR) = R2 = M.
A 2×2 matrix with two distinct nonzero eigenvalues has four square roots. A positive-definite matrix has precisely one positive-definite square root.

A general formula

The following is a general formula that applies to almost any 2 × 2 matrix.[1] Let the given matrix be where A, B, C, and D may be real or complex numbers. Furthermore, let τ = A + D be the trace of M, and δ = ADBC be its determinant. Let s be such that s2 = δ, and t be such that t2 = τ + 2s. That is, Then, if t ≠ 0, a square root of M is

Indeed, the square of R is

Note that R may have complex entries even if M is a real matrix; this will be the case, in particular, if the determinant δ is negative.

The general case of this formula is when δ is nonzero, and τ2 ≠ 4δ, in which case s is nonzero, and t is nonzero for each choice of sign of s. Then the formula above will provide four distinct square roots R, one for each choice of signs for s and t.

Special cases of the formula

If the determinant δ is zero, but the trace τ is nonzero, the general formula above will give only two distinct solutions, corresponding to the two signs of t. Namely, where t is any square root of the trace τ.

The formula also gives only two distinct solutions if δ is nonzero, and τ2 = 4δ (the case of duplicate eigenvalues), in which case one of the choices for s will make the denominator t be zero. In that case, the two roots are where s is the square root of δ that makes τ − 2s nonzero, and t is any square root of τ − 2s.

The formula above fails completely if δ and τ are both zero; that is, if D = −A, and A2 = −BC, so that both the trace and the determinant of the matrix are zero. In this case, if M is the null matrix (with A = B = C = D = 0), then the null matrix is also a square root of M, as is any matrix

where b and c are arbitrary real or complex values. Otherwise M has no square root.

Formulas for special matrices

Idempotent matrix

If M is an idempotent matrix, meaning that MM = M, then if it is not the identity matrix, its determinant is zero, and its trace equals its rank, which (excluding the zero matrix) is 1. Then the above formula has s = 0 and τ = 1, giving M and −M as two square roots of M.

Exponential matrix

If the matrix M can be expressed as real multiple of the exponent of some matrix A, , then two of its square roots are . In this case the square root is real.[2]

Diagonal matrix

If M is diagonal (that is, B = C = 0), one can use the simplified formula

where a = ±√A, and d = ±√D. This, for the various sign choices, gives four, two, or one distinct matrices, if none of, only one of, or both A and D are zero, respectively.

Identity matrix

Because it has duplicate eigenvalues, the 2×2 identity matrix has infinitely many symmetric rational square roots given by where (r, s, t) are any complex numbers such that [3]

Matrix with one off-diagonal zero

If B is zero, but A and D are not both zero, one can use

This formula will provide two solutions if A = D or A = 0 or D = 0, and four otherwise. A similar formula can be used when C is zero, but A and D are not both zero.

References

  1. ^ Levinger, Bernard W. (September 1980), "The square root of a matrix", Mathematics Magazine, 53 (4): 222–224, doi:10.1080/0025570X.1980.11976858, JSTOR 2689616
  2. ^ Harkin, Anthony A.; Harkin, Joseph B. (2004), "Geometry of generalized complex numbers" (PDF), Mathematics Magazine, 77 (2): 118–129, doi:10.1080/0025570X.2004.11953236, JSTOR 3219099, MR 1573734
  3. ^ Mitchell, Douglas W. (November 2003), "87.57 Using Pythagorean triples to generate square roots of ", The Mathematical Gazette, 87 (510): 499–500, doi:10.1017/S0025557200173723, JSTOR 3621289

Read other articles:

Katedral EłkKatedral Santo Adalbertus, EłkPolandia: Katedra św. Wojciecha w Ełkucode: pl is deprecated Katedral EłkLokasiEłkNegara PolandiaDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Ełk Katedral Ełk atau yang bernama resmi Katedral Santo Adalbertus (Polandia: Katedra św. Wojciecha w Ełkucode: pl is deprecated ) adalah sebuah gereja katedral Katolik yang terletak di Ełk, Polandia. Katedral ini merupakan pusat kedudu...

 

30 April adalah hari ke-120 (hari ke-121 dalam tahun kabisat) dalam kalender Gregorian. << April >> Mi Sn Sl Ra Ka Ju Sa 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30   2024 Peristiwa 1492 – Spanyol memberi izin berlayar pada Christopher Columbus. 1786 – William Herschel menemukan galaksi NGC 5566. 1789 – George Washington mulai menjabat sebagai presiden pertama Amerika Serikat. 1803 – Amerika Serikat membeli Louisiana sehar...

 

Philosophy carried out by Christians For the branch of theology which uses philosophical methods to analyze theological concepts, see Philosophical theology. For the branch of theology which aims to present a rational defense for the Christian faith, often using philosophical methods, see Christian apologetics. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may need to be re...

See also: Ościsłowo, Greater Poland Voivodeship Village in Masovian Voivodeship, PolandOścisłowoVillageOścisłowoCoordinates: 52°50′5″N 20°27′0″E / 52.83472°N 20.45000°E / 52.83472; 20.45000Country PolandVoivodeshipMasovianCountyCiechanówGminaGlinojeckTime zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST)Vehicle registrationWCINational roads Ościsłowo [ɔɕt͡ɕiˈswɔvɔ] is a village in the administrative district of Gmina Glinojeck, wit...

 

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Aksara Incung – berita · surat kabar ·...

 

Moon Lovers: Scarlet Heart RyeoPoster promosiGenreRomansa, Drama, Fiksi, FantasiBerdasarkanBu Bu Jing Xin oleh Tong HuaDitulis olehJo Yoon-youngSutradaraKim Kyu-taePemeranLee Joon-gi Lee Ji-eunKang Ha-neulNegara asalKorea SelatanBahasa asliKoreaJmlh. musim1Jmlh. episode20ProduksiLokasi produksiPocheon, GyeonggiDanyang, Chungcheong UtaraBuyeo, Chungcheong SelatanDalseong, DaeguDurasi60 menitRumah produksiNBCUniversalYG EntertainmentDistributorSBSRilis asliJaringanSBSRilis29 Agustus –1 ...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يناير 2022) فك ارتب...

 

Le château de Chambord, qui fut le premier monument visité dans le Loir-et-Cher avant d’être détrôné par le ZooParc de Beauval en 2014. Le département de Loir-et-Cher est issu de la Révolution qui crée les départements français en 1790. Formé principalement à partir des anciens comtés de Blois et de Vendôme, eux-mêmes héritiers des pays blesensis et vindocinensis de la nation gauloise des Carnutes, l’unité géographique et historique du département n’est pas homogène...

 

Porvenir MassacrePart of the Bandit War, Mexican RevolutionLocationPorvenir, Presidio County, TexasCoordinates30°25′7″N 104°50′40″W / 30.41861°N 104.84444°W / 30.41861; -104.84444 (Porvenir)DateJanuary 28, 1918 (1918-01-28)Weaponssmall armsDeaths15PerpetratorsCompany B, Texas Rangers;Troop G, 8th Cavalry Regiment;local ranchersMotiveRetaliation for Brite Ranch raid This article is part of a series on theHistory of Chicanos and Mexican...

Brad Schneider Anggota Dewan Perwakilan Rakyat A.S.dari dapil ke-10 IllinoisPetahanaMulai menjabat 3 Januari 2017PendahuluBob DoldPenggantiPetahanaMasa jabatan3 Januari 2013 – 3 Januari 2015PendahuluBob DoldPenggantiBob Dold Informasi pribadiLahirBradley Scott Schneider20 Agustus 1961 (umur 62)Denver, Colorado, ASPartai politikPartai DemokratSuami/istriJulie Dann ​(m. 1989)​Anak2PendidikanNorthwestern University (BS, MBA)Situs webSi...

 

1945–1948 government in northern Korea Soviet Civil Administration in KoreaСоветская гражданская администрация (Russian)소비에트 민정청 (Korean)1945–1948 Top: Flag of the Soviet UnionBottom: Flag of North Korea (1946–1948) Emblem of the People's Committee Anthem: 소비에트 연방 찬가State Anthem of the Soviet Union(1946–1947)Location of northern KoreaStatusMilitary occupationCapitalPyongyangOfficial languagesRussian, Ko...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

American classical composer (1873–1954) J. Rosamond Johnson, right, with Bob Cole J. Rosamond Johnson, photo by Carl Van Vechten (1933) John Rosamond Johnson (August 11, 1873 – November 11, 1954; usually referred to as J. Rosamond Johnson)[1] was an American composer and singer during the Harlem Renaissance. Born in Jacksonville, Florida, he had much of his career in New York City. Johnson is noted as the composer of the tune for the hymn Lift Every Voice and Sing. It was first pe...

 

Portuguese pork dish Carne de porco à alentejana Carne de porco à alentejana (pork with clams) is one of the most traditional and popular pork dishes of Portuguese cuisine. It is a combination of pork and clams, with potatoes and coriander.[1] Usually, about 800 g of pork are marinated for some time in white wine, paprika, red pepper paste, chopped garlic, coriander, bay leaf, and salt and white pepper. Cumin is often added in northern Portugal as well.[2] It is then fr...

 

Diskografi HyunaHyuna di Open Concert pada September 2017Video musik14Extended play8Singel12Album singel1Extended play kolaboratif1Kolaborasi7Singel promosi1 Penyanyi-penulis lagu, rapper, dan model Korea Selatan Hyuna telah merilis delapan album mini (EP), satu album mini kolaboratif (EP), satu album singel, dua belas singel sebagai artis utama, dan satu singel promosi. Dia memulai debutnya sebagai anggota girl grup Korea Selatan Wonder Girls pada Februari 2007, dan kemudian keluar dari grup...

У этого топонима есть и другие значения, см. Чарлстон. Не следует путать с Норт-Чарлстон. ГородЧарлстонангл. Charleston Улица Броад-Стрит и Церковь Святого Михаила[англ.] Флаг 32°46′34″ с. ш. 79°55′57″ з. д.HGЯO Страна  США Штат Южная Каролина Мэр Джон Текленбург Истори...

 

Roman term for a fortified military base This article is about the Latin term. For the star system, see Epsilon Capricorni. Templeborough Roman fort in South Yorkshire visualised 3D flythrough, produced for Rotherham Museums and Archives Part of a series on theMilitary of ancient Rome 753 BC – AD 476 Structural history Army Unit types and ranks Decorations and punishments Legions Auxilia Generals Navy Fleets Admirals Campaign history Wars and battles Technological history Military engineeri...

 

Questa voce sugli argomenti ponti della Francia e Normandia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Ponte di NormandiaLocalizzazioneStato Francia CittàLe HavreHonfleur AttraversaSenna Coordinate49°25′54.84″N 0°16′29.28″E49°25′54.84″N, 0°16′29.28″E Dati tecniciTipoponte strallato Materialecemento armato Campate3 Lunghezza2 141 m Luce max.850 m Larghezza23,60 m Altezza214,77 m RealizzazioneProgettistiMichel Virloge...

For the history of science and technology of modern China, see History of science and technology in the People's Republic of China. For the science and technology of modern China, see Science and technology in China. Part of a series on theHistory of science and technology in China List of discoveries List of inventions the Four Great Inventions By subject Agriculture sericulture Alchemy Architecture classic gardens bridges Astronomy Calendar Cartography Ceramics Coinage Mathematics Units of...

 

Gallini CupSport Calcio CategoriaTorneo Giovanile Paese LuogoProvincia di Pordenone MottoElite Football Tournament CadenzaAnnuale Partecipanti120 Sito Internetgallinicup.com StoriaFondazione1999 Numero edizioni24 Record vittorie Atalanta (8) Modifica dati su Wikidata · Manuale Gallini Cup è un torneo internazionale di calcio giovanile che si svolge a Pordenone nei giorni di Pasqua. Alla manifestazione vengono selezionate ogni anno 120 società provenienti da tutto il mondo, renden...