Slerp

In computer graphics, slerp is shorthand for spherical linear interpolation, introduced by Ken Shoemake[1] in the context of quaternion interpolation for the purpose of animating 3D rotation. It refers to constant-speed motion along a unit-radius great circle arc, given the ends and an interpolation parameter between 0 and 1.

Geometric slerp

Slerp has a geometric formula independent of quaternions, and independent of the dimension of the space in which the arc is embedded. This formula, a symmetric weighted sum credited to Glenn Davis, is based on the fact that any point on the curve must be a linear combination of the ends. Let p0 and p1 be the first and last points of the arc, and let t be the parameter, 0 ≤ t ≤ 1. Compute Ω as the angle subtended by the arc, so that cos Ω = p0p1, the n-dimensional dot product of the unit vectors from the origin to the ends. The geometric formula is then

The symmetry lies in the fact that slerp(p0, p1; t) = slerp(p1, p0; 1 − t). In the limit as Ω → 0, this formula reduces to the corresponding symmetric formula for linear interpolation,

A slerp path is, in fact, the spherical geometry equivalent of a path along a line segment in the plane; a great circle is a spherical geodesic.

Oblique vector rectifies to slerp factor.

More familiar than the general slerp formula is the case when the end vectors are perpendicular, in which case the formula is p0cos θ + p1sin θ. Letting θ = tπ/2, and applying the trigonometric identity cos θ = sin(π/2 − θ), this becomes the slerp formula. The factor of 1/sin Ω in the general formula is a normalization, since a vector p1 at an angle of Ω to p0 projects onto the perpendicular ⊥p0 with a length of only sin Ω.

Some special cases of slerp admit more efficient calculation. When a circular arc is to be drawn into a raster image, the preferred method is some variation of Bresenham's circle algorithm. Evaluation at the special parameter values 0 and 1 trivially yields p0 and p1, respectively; and bisection, evaluation at 1/2, simplifies to (p0 + p1)/2, normalized. Another special case, common in animation, is evaluation with fixed ends and equal parametric steps. If pk−1 and pk are two consecutive values, and if c is twice their dot product (constant for all steps), then the next value, pk+1, is the reflection pk+1 = cpkpk−1.

Quaternion slerp

When slerp is applied to unit quaternions, the quaternion path maps to a path through 3D rotations in a standard way. The effect is a rotation with uniform angular velocity around a fixed rotation axis. When the initial end point is the identity quaternion, slerp gives a segment of a one-parameter subgroup of both the Lie group of 3D rotations, SO(3), and its universal covering group of unit quaternions, S3. Slerp gives a straightest and shortest path between its quaternion end points, and maps to a rotation through an angle of 2Ω. However, because the covering is double (q and −q map to the same rotation), the rotation path may turn either the "short way" (less than 180°) or the "long way" (more than 180°). Long paths can be prevented by negating one end if the dot product, cos Ω, is negative, thus ensuring that −90° ≤ Ω ≤ 90°.

Slerp also has expressions in terms of quaternion algebra, all using exponentiation. Real powers of a quaternion are defined in terms of the quaternion exponential function, written as eq and given by the power series equally familiar from calculus, complex analysis and matrix algebra:

Writing a unit quaternion q in versor form, cos Ω + v sin Ω, with v a unit 3-vector, and noting that the quaternion square v2 equals −1 (implying a quaternion version of Euler's formula), we have evΩ = q, and qt = cos tΩ + v sin tΩ. The identification of interest is q = q1q0−1, so that the real part of q is cos Ω, the same as the geometric dot product used above. Here are four equivalent quaternion expressions for slerp.

The derivative of slerp(q0, q1; t) with respect to t, assuming the ends are fixed, is log(q1q0−1) times the function value, where the quaternion natural logarithm in this case yields half the 3D angular velocity vector. The initial tangent vector is parallel transported to each tangent along the curve; thus the curve is, indeed, a geodesic.

In the tangent space at any point on a quaternion slerp curve, the inverse of the exponential map transforms the curve into a line segment. Slerp curves not extending through a point fail to transform into lines in that point's tangent space.

Quaternion slerps are commonly used to construct smooth animation curves by mimicking affine constructions like the de Casteljau algorithm for Bézier curves. Since the sphere is not an affine space, familiar properties of affine constructions may fail, though the constructed curves may otherwise be entirely satisfactory. For example, the de Casteljau algorithm may be used to split a curve in affine space; this does not work on a sphere.

The two-valued slerp can be extended to interpolate among many unit quaternions,[2] but the extension loses the fixed execution-time of the slerp algorithm.

See also

References

  1. ^ "Ken Shoemake - Home".
  2. ^ Pennec, Xavier (March 1998). Computing the Mean of Geometric Features Application to the Mean Rotation (report). INRIA. Retrieved 19 June 2020.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Give Me Love (Give Me Peace on Earth)Singel oleh George Harrisondari album Living in the Material WorldSisi-BMiss O'DellDirilis7 Mei 1973GenreFolk rock, gospelDurasi3:25LabelApplePenciptaGeorge HarrisonProduserGeorge HarrisonKronologi singel George Har...

 

مطار الخرطوم الدولي مطار الخرطوم الدولي إياتا: KRT – ايكاو: HSSS موجز نوع المطار مدني / عسكري المشغل شركة مطارات السودان القابضة محور خطوط لـ الخطوط الجوية السودانية بدر للطيران تاركو للطيران يخدم الخرطوم[1][2]  البلد  السودان الموقع الخرطوم، ولاية الخرطوم الارتف�...

 

Penguilly l'Haridon: Le Combat des Trente. lbsPerang Suksesi Brittania Champtoceaux Brest Morlaix Saint-Pol-de-Léon La Roche-Derrien Tiga Puluh Mauron Auray lbsPerang Seratus Tahun Fase Edward Suksesi Brittania Perang Saudara Castile Perang Dua Peter Fase Caroline Perang Salib Despenser Krisis 1383–1385 Fase Lancaster Konflik Armagnac–Burgundia Pertempuran Tiga Puluh Ksatria (26 Maret 1351[1]) [dikenal sebagai Combat des Trente dalam bahasa Prancis] adalah salah satu episode...

العلاقات بين سويسرا والاتحاد الأوروبي     الاتحاد الأوروبي   سويسرا تعديل مصدري - تعديل   جزء من سلسلة مقالات سياسة الاتحاد الأوروبيالاتحاد الأوروبي الدول الأعضاء (27) إسبانيا إستونيا إيطاليا ألمانيا أيرلندا البرتغال بلجيكا بلغاريا بولندا جمهورية التشيك ال�...

 

Questa voce sull'argomento cestisti spagnoli è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Álvaro Muñoz Nazionalità  Spagna Germania Altezza 197 cm Peso 90 kg Pallacanestro Ruolo Ala piccola Squadra  Obradoiro Carriera Giovanili 2005-2008 Óbila2008-2009 Valladolid Squadre di club 2007-2008 Óbila12 (3)2008-2009 Valladolid1 (0)2008-2009→ Zarzuela Maristas Boeci...

 

Theater in Saint Petersburg, Russia You can help expand this article with text translated from the corresponding article in Russian. (January 2017) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translat...

Questa voce sull'argomento calciatori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Carlo Villa Nazionalità  Italia Calcio Ruolo Attaccante CarrieraSquadre di club1 1923-1924 Vercellesi Erranti? (?)1924-1929 Pro Vercelli55 (20) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito.   Modific...

 

Disambiguazione – Se stai cercando altri significati, vedi La Higuera. Questa voce o sezione sull'argomento centri abitati della Spagna non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Higueracomune Higuera – Veduta LocalizzazioneStato Spagna Comunità autonoma Estremadura Provincia Cácer...

 

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

1966 EuropeanAthletics ChampionshipsTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmen5000 mmen10,000 mmen80 m hurdleswomen110 m hurdlesmen400 m hurdlesmen3000 msteeplechasemen4×100 m relaymenwomen4×400 m relaymenRoad eventsMarathonmen20 km walkmen50 km walkmenField eventsHigh jumpmenwomenPole vaultmenLong jumpmenwomenTriple jumpmenShot putmenwomenDiscus throwmenwomenHammer throwmenJavelin throwmenwomenCombined eventsPentathlonwomenDecathlonmenvte The women's 4 x 100...

 

Львовский трамвай Описание Страна  Украина Расположение Львов Дата открытия 3 мая 1880 года Эксплуатант ЛКП «Львовэлектротранс» Маршрутная сеть Число маршрутов 8 Самый длинный маршрут 4-й (9,4 км) Длина сети 86 км Длина конт. сети в период макс. развития 76,4 Длина маршрутов 43 ...

Italian luthier (1644–1737) Stradivari redirects here. For the instruments bearing his name, see Stradivarius. For other meanings, see Stradivari (disambiguation). Antonio StradivariBornAntonius Stradivariusc. 1644Cremona, Lombardy,Duchy of Milan (present-day Italy)Died18 December 1737(1737-12-18) (aged 92–93)Cremona, LombardyResting placeChurch of San Domenico[1]EducationNicola AmatiFrancesco RugeriKnown forLuthierNotable workex-Back (c. 1666)Cipriani Potter...

 

Konten dan perspektif penulisan artikel ini tidak menggambarkan wawasan global pada subjeknya. Silakan bantu mengembangkan atau bicarakan artikel ini di halaman pembicaraannya, atau buat artikel baru, bila perlu. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini sudah memiliki referensi, tetapi tidak disertai kutipan yang cukup. Anda dapat membantu mengembangkan artikel ini dengan menambahkan lebih banyak kutipan pada teks artikel. (April 2009) (Pelajari cara dan...

 

Artikel ini bukan mengenai Muhammad Said. Artikel biografi ini ditulis menyerupai resume atau daftar riwayat hidup (Curriculum Vitae). Tolong bantu perbaiki agar netral dan ensiklopedis. Artikel ini membutuhkan penyuntingan lebih lanjut mengenai tata bahasa, gaya penulisan, hubungan antarparagraf, nada penulisan, atau ejaan. Anda dapat membantu untuk menyuntingnya. Mohammad Said H. Mohammad Said (17 Agustus 1905 – 26 April 1995) adalah seorang wartawan, politikus, sejarawan da...

American lecturer, photographer and journalist (1858–1923) George Wharton JamesBorn27 September 1858Lincolnshire, EnglandDied1923Occupationlecturer, photographer, journalistSubjectCalifornia and the American Southwest George Wharton James (27 September 1858[1] – 8 November 1923)[2] was an American popular lecturer, photographer, journalist and editor. Born in Lincolnshire, England, he emigrated to the United States as a young man after being ordained as a Methodist ministe...

 

Questa voce o sezione sull'argomento centri abitati della Repubblica Ceca non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Kuklíkcomune Kuklík – Veduta LocalizzazioneStato Rep. Ceca Regione Vysočina DistrettoŽďár nad Sázavou TerritorioCoordinate49°37′48″N 16°06′49″E49°37′48�...

 

Liszt ist eine Weiterleitung auf diesen Artikel. Für den Juristen siehe Franz von Liszt, für weitere Personen siehe Franz List. Franz Liszt mit 46 Jahren,Fotografie von Franz Hanfstaengl Franz Liszt, Fotografie von Joseph Albert Franz Liszt [list] (ungarisch Liszt Ferencz;[1] geboren am 22. Oktober 1811 in Raiding, Komitat Ödenburg, Kaisertum Österreich; gestorben am 31. Juli 1886 in Bayreuth, Königreich Bayern, Deutsches Reich) war ein österreichisch-ungarischer Komponist, Pia...

Not to be confused with Sa Dulo ng Walang Hanggan or Walang Hanggang Paalam. For the TV series with the same title that once aired on GMA, see Walang Hanggan (2003 TV series). 2012 Filipino TV series or program Walang HangganTitle cardAlso known asMy EternalGenreMelodramaRomanceCreated byABS-CBN Studios Rondel P. LindayagReggie AmigoBased onHihintayin Kita sa Langitby Carlos Siguion-ReynaWuthering Heightsby Emily BrontëDeveloped byABS-CBN Studios Roldeo T. EndrinalJulie Anne R. BenitezWritte...

 

Application protocol for distributed, collaborative, hypermedia information systems HTTPInternational standard RFC 1945 HTTP/1.0 RFC 9110 HTTP Semantics RFC 9111 HTTP Caching RFC 9112 HTTP/1.1 RFC 9113 HTTP/2 RFC 7541 HTTP/2: HPACK Header Compression RFC 8164 HTTP/2: Opportunistic Security for HTTP/2 RFC 8336 HTTP/2: The ORIGIN HTTP/2 Frame RFC 8441 HTTP/2: Bootstrapping WebSockets with HTTP/2 RFC 9114 HTTP/3 RFC 9204 HTTP/3: QPACK: Field...