there exists a set N of measure 0 such that for all x outside of N, the derivativef′(x) exists and is zero; that is, the derivative of f vanishes almost everywhere.
f is non-constant on [a, b].
A standard example of a singular function is the Cantor function, which is sometimes called the devil's staircase (a term also used for singular functions in general). There are, however, other functions that have been given that name. One is defined in terms of the circle map.
When discussing mathematical analysis in general, or more specifically real analysis or complex analysis or differential equations, it is common for a function which contains a mathematical singularity to be referred to as a 'singular function'. This is especially true when referring to functions which diverge to infinity at a point or on a boundary. For example, one might say, "1/x becomes singular at the origin, so 1/x is a singular function."