Shock tube

For the pyrotechnic initiator, see Shock tube detonator
Shock tube test apparatus at the University of Ottawa, Canada.
Remnants of spent aluminium foil being removed by student.
An idealized shock tube. The plot shows different waves which are formed in the tube once the diaphragm is ruptured.

A shock tube is an instrument used to replicate and direct blast waves at a sensor or model in order to simulate explosions and their effects, usually on a smaller scale. Shock tubes (and related impulse facilities such as shock tunnels, expansion tubes, and expansion tunnels) can also be used to study aerodynamic flow under a wide range of temperatures and pressures that are difficult to obtain in other types of testing facilities. Shock tubes are also used to investigate compressible flow phenomena and gas phase combustion reactions. More recently, shock tubes have been used in biomedical research to study how biological specimens are affected by blast waves.[1][2]

A shock wave inside a shock tube may be generated by a small explosion (blast-driven) or by the buildup of high pressures which cause diaphragm(s) to burst and a shock wave to propagate down the shock tube (compressed-gas driven).

History

An early study of compression driven shock tubes was published in 1899 by French scientist Paul Vieille, though the apparatus was not called a shock tube until the 1940s.[3] In the 1930s it was rediscovered by W. H. Payman and WCF Shepherd of English Safety in Mines Research Board in order to study underground methane explosions, but the term was not coined until Bleakney et al. publication of 1949.[4][5]

In the 1940s, interest revived and shock tubes were increasingly used to study the flow of fast moving gases over objects, the chemistry and physical dynamics of gas phase combustion reactions. The modern version of the shock tube was developed during WWII at Princeton University by a group led by Walker Bleakney,[6] who published overviews of their studies in 1946 and 1949.

In 1966, Duff and Blackwell[7] described a type of shock tube driven by high explosives. These ranged in diameter from 0.6 to 2 m and in length from 3 m to 15 m. The tubes themselves were constructed of low-cost materials and produced shock waves with peak dynamic pressures of 7 MPa to 200 MPa and durations of a few hundred microseconds to several milliseconds.

Both compression-driven and blast-driven shock tubes are currently used for scientific as well as military applications. Compressed-gas driven shock tubes are more easily obtained and maintained in laboratory conditions; however, the shape of the pressure wave is different from a blast wave in some important respects and may not be suitable for some applications. Blast-driven shock tubes generate pressure waves that are more realistic to free-field blast waves. However, they require facilities and expert personnel for handling high explosives. Also, in addition to the initial pressure wave, a jet effect caused by the expansion of compressed gases (compression-driven) or production of rapidly expanding gases (blast-driven) follows and may transfer momentum to a sample after the blast wave has passed. More recently, laboratory scale shock tubes driven by fuel-air mixtures have been developed that produce realistic blast waves and can be operated in more ordinary laboratory facilities.[8] Because the molar volume of gas is much less, the jet effect is a fraction of that for compressed-gas driven shock tubes. To date, the smaller size and lower peak pressures generated by these shock tubes make them most useful for preliminary, nondestructive testing of materials, validation of measurement equipment such as high speed pressure transducers, and for biomedical research as well as military applications.

Operation

Aluminium foil used as a diaphragm between shock tube pipe segments.

A simple shock tube is a tube, rectangular or circular in cross-section, usually constructed of metal, in which a gas at low pressure and a gas at high pressure are separated using some form of diaphragm. See, for instance, texts by Soloukhin, Gaydon and Hurle, and Bradley.[9][10][11] The diaphragm suddenly bursts open under predetermined conditions to produce a wave propagating through the low pressure section. The shock that eventually forms increases the temperature and pressure of the test gas and induces a flow in the direction of the shock wave. Observations can be made in the flow behind the incident front or take advantage of the longer testing times and vastly enhanced pressures and temperatures behind the reflected wave.

The low-pressure gas, referred to as the driven gas, is subjected to the shock wave. The high pressure gas is known as the driver gas. The corresponding sections of the tube are likewise called the driver and driven sections. The driver gas is usually chosen to have a low molecular weight, (e.g., helium or hydrogen) for safety reasons, with high speed of sound, but may be slightly diluted to 'tailor' interface conditions across the shock. To obtain the strongest shocks the pressure of the driven gas is well below atmospheric pressure (a partial vacuum is induced in the driven section before detonation).

The test begins with the bursting of the diaphragm.[12] Several methods are commonly used to burst the diaphragm.

  • A mechanically-driven plunger is sometimes used to pierce it or an explosive charge may be used to burst it.
  • Another method is to use diaphragms of plastic or metals to define specific bursting pressures. Plastics are used for the lowest burst pressures, aluminum and copper for somewhat higher levels and mild steel and stainless steel for the highest burst pressures.[13] These diaphragms are frequently scored in a cross-shaped pattern to a calibrated depth to ensure that they rupture evenly, contouring the petals so that the full section of the tube remains open during the test time.
  • Yet another method of rupturing the diaphragm utilizes a mixture of combustible gases, with an initiator designed to produce a detonation within it, producing a sudden and sharp increase in what may or may not be a pressurized driver. This blast wave increases the temperature and pressure of the driven gas and induces a flow in the direction of the shock wave but at lower velocity than the lead wave.

The bursting diaphragm produces a series of pressure waves, each increasing the speed of sound behind them, so that they compress into a shock propagating through the driven gas. This shock wave increases the temperature and pressure of the driven gas and induces a flow in the direction of the shock wave but at lower velocity than the lead wave. Simultaneously, a rarefaction wave, often referred to as the Prandtl-Meyer wave, travels back in to the driver gas.

The interface, across which a limited degree of mixing occurs, separates driven and driver gases is referred to as the contact surface and follows, at a lower velocity, the lead wave.

A 'Chemical Shock Tube' involves separating driver and driven gases by a pair of diaphragms designed to fail after pre-determined delays with an end 'dump tank' of greatly increased cross-section. This allows an extreme rapid reduction (quench) in temperature of the heated gases.

Uses

In addition to measurements of rates of chemical kinetics shock tubes have been used to measure dissociation energies and molecular relaxation rates[14][15][16][17] they have been used in aerodynamic tests. The fluid flow in the driven gas can be used much as a wind tunnel, allowing higher temperatures and pressures therein [18] replicating conditions in the turbine sections of jet engines. However, test times are limited to a few milliseconds, either by the arrival of the contact surface or the reflected shock wave.

They have been further developed into shock tunnels, with an added nozzle and dump tank. The resultant high temperature hypersonic flow can be used to simulate atmospheric re-entry of spacecraft or hypersonic craft, again with limited testing times.[19]

Shock tubes have been developed in a wide range of sizes. The size and method of producing the shock wave determine the peak and duration of the pressure wave it produces. Thus, shock tubes can be used as a tool used to both create and direct blast waves at a sensor or an object in order to imitate actual explosions and the damage that they cause on a smaller scale, provided that such explosions do not involve elevated temperatures and shrapnel or flying debris. Results from shock tube experiments can be used to develop and validate numerical model of the response of a material or object to an ambient blast wave without shrapnel or flying debris. Shock tubes can be used to experimentally determine which materials and designs would be best suited to the job of attenuating ambient blast waves without shrapnel or flying debris. The results can then be incorporated into designs to protect structures and people that might be exposed to an ambient blast wave without shrapnel or flying debris. Shock tubes are also used in biomedical research to find out how biological tissues are affected by blast waves.

There are alternatives to the classical shock tube; for laboratory experiments at very high pressure, shock waves can also be created using high-intensity short-pulse lasers.[20][21][22][23]

See also

References

  1. ^ Cernak, Ibolja (2010). "The importance of systemic response in the pathobiology of blast-induced neurotrauma". Frontiers in Neurology. 1: 151. doi:10.3389/fneur.2010.00151. PMC 3009449. PMID 21206523.
  2. ^ Chavko, Mikulas; Koller, Wayne A.; Prusaczyk, W. Keith; McCarron, Richard M. (2007). "Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain". Journal of Neuroscience Methods. 159 (2): 277–281. doi:10.1016/j.jneumeth.2006.07.018. PMID 16949675. S2CID 40961004.
  3. ^ Henshall, BD. Some aspects of the use of shock tubes in aerodynamic research. Aeronautical Research Council Reports and Memoranda. R&M No. 3044, London, Her Majesty's Stationery Office, 1957.
  4. ^ Krehl, Peter O. K. (24 September 2008). History of Shock Waves, Explosions and Impact: A Chronological and Biographical Reference. Springer. ISBN 978-3-540-30421-0.
  5. ^ Bleakney, Walker; Taub, A. H. (1 October 1949). "Interaction of Shock Waves". Reviews of Modern Physics. 21 (4): 584–605. doi:10.1103/RevModPhys.21.584.
  6. ^ Emrich, R. J. (1 May 1996). "Walker Bleakney and the development of the shock tube at Princeton". Shock Waves. 5 (6): 327–339. doi:10.1007/BF02434008. ISSN 1432-2153. S2CID 120610589.
  7. ^ Duff, Russell E.; Blackwell, Arlyn N. (1966). "Explosive Driven Shock Tubes". Review of Scientific Instruments. 37 (5): 579–586. Bibcode:1966RScI...37..579D. doi:10.1063/1.1720256.
  8. ^ Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W. (2012). "Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects". Review of Scientific Instruments. 83 (4): 045111–045111–7. arXiv:1105.4670. Bibcode:2012RScI...83d5111C. doi:10.1063/1.3702803. PMID 22559580. S2CID 205170036.
  9. ^ Soloukhin, R.I., Shock Waves and Detonations in Gases, Mono Books, Baltimore, 1966.
  10. ^ Gaydon, A.G., and Hurle, I.R., The Shock Tube in High Temperature Chemical Physics, Chapman and Hall, London, 1963.
  11. ^ Bradley, J., Shock Waves in Chemistry and Physics, Chapman and Hall, London, 1962.
  12. ^ Soloukhin, R.I., Shock Waves and Detonations in Gases, Mono Books, Baltimore, 1966.
  13. ^ Bradley, J., Shock Waves in Chemistry and Physics, Chapman and Hall, London, 1962.
  14. ^ Strehlow, 1967, Illinois University, Dept.Aero.and Astro. AAE Rept.76-2.
  15. ^ Nettleton, 1977, Comb.and Flame, 28,3. and 2000, Shock Waves, 12,3.
  16. ^ Chrystie, Robin; Nasir, Ehson F.; Farooq, Aamir (2014-12-01). "Ultra-fast and calibration-free temperature sensing in the intrapulse mode" (PDF). Optics Letters. 39 (23): 6620–6623. Bibcode:2014OptL...39.6620C. doi:10.1364/OL.39.006620. hdl:10754/347273. PMID 25490636.
  17. ^ Gelfand; Frolov; Nettleton (1991). "Gaseous detonations—A selective review". Prog. Energy Comb. Sci. 17 (4): 327. doi:10.1016/0360-1285(91)90007-A.
  18. ^ Liepmann, H. W. and Roshko, A., 1957, 'Elements of Gas Dynamics', Dover Publications. ISBN 0-486-41963-0
  19. ^ Anderson, J. D., 1989, 'Hypersonic and High Temperature Gas Dynamics', AIAA. ISBN 1-56347-459-X
  20. ^ Veeser, L. R.; Solem, J. C. (1978). "Studies of Laser-driven shock waves in aluminum". Physical Review Letters. 40 (21): 1391. Bibcode:1978PhRvL..40.1391V. doi:10.1103/PhysRevLett.40.1391.
  21. ^ Solem, J. C.; Veeser, L. R. (1978). "Laser-driven shock wave studies". Proceedings of Symposium on the Behavior of Dense Media Under High Dynamic Pressure: 463–476. Los Alamos Scientific Laboratory Report LA-UR-78-1039.
  22. ^ Veeser, L. R.; Solem, J. C.; Lieber, A. J. (1979). "Impedance-match experiments using laser-driven shock waves". Applied Physics Letters. 35 (10): 761–763. Bibcode:1979ApPhL..35..761V. doi:10.1063/1.90961.
  23. ^ Veeser, L.; Lieber, A.; Solem, J. C. (1979). "Planar streak camera laser-driven shockwave studies". Proceedings of International Conference on Lasers '79. 80. Orlando, FL, 17 December 17, 1979. LA-UR-79-3509; CONF-791220-3. (Los Alamos Scientific Lab., NM): 45. Bibcode:1979STIN...8024618V. OSTI 5806611.{{cite journal}}: CS1 maint: location (link)

Read other articles:

Disambiguazione – Se stai cercando altre persone con lo stesso nome, vedi Giuseppe Conte (disambigua). Giuseppe Conte Presidente del Movimento 5 StelleIn caricaInizio mandato6 agosto 2021[1] PredecessoreVito Crimi[2] Presidente del Consiglio dei ministri della Repubblica ItalianaDurata mandato1º giugno 2018 –13 febbraio 2021 Capo di StatoSergio Mattarella Vice presidenteMatteo Salvini[3]Luigi Di Maio[3] PredecessorePaolo Gentiloni ...

 

Lutung banggat[1] Status konservasi Rentan (IUCN 3.1)[2] Klasifikasi ilmiah Kerajaan: Animalia Filum: Khordata Kelas: Mamalia Ordo: Primata Famili: Cercopithecidae Genus: Presbytis Spesies: P. hosei Nama binomial Presbytis hosei(Thomas, 1889) Persebaran lutung banggat Lutung banggat (Hose's langur, Presbytis hosei) adalah sebuah spesies primata dalam keluarga Cercopithecidae. Ini adalah endemik di pulau Borneo, yang meliputi Brunei, Kalimantan (Indonesia), dan Malay...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Semut pudak Worker Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Hymenoptera Famili: Formicidae Genus: Tapinoma Spesies: T. melanocephalum Nama binomial Tapinoma melanocephalum(Fabricius, 1793) Semut pudak (Tapinoma...

Voce principale: Alma Juventus Fano 1906. Fano CalcioStagione 1988-1989Sport calcio Squadra Fano Allenatore Carlo Florimbi Presidente Lino Clemente Serie C29º posto nel girone C. Maggiori presenzeCampionato: Misefori (34) Miglior marcatoreCampionato: Minuti (15) 1987-1988 1989-1990 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti il Fano Calcio nelle competizioni ufficiali della stagione 1988-1989. Indice 1 Rosa 2 Risultati 2.1 Campionato 2.1.1...

 

Fabian SocietyFabian Society logoSingkatanFabian SocietyTanggal pendirian4 Januari 1884; 140 tahun lalu (1884-01-04)TujuanBertujuan untuk menjunjung tinggi persamaan kekuasaan, kekayaan dan kesempata, menjunjung tinggi nilai kebersamaan dan memberikan pelayanaan publik, menjunjung tinggi rasa bertanggung jawab, toleransi, demokrasi aktif, meneruskan pembangunan, meningkatkan kerjasama multilateral Kantor pusatLondon, Britania RayaLokasiAustralia, Prancis, dan LondonJumlah anggota 7,000Ba...

 

Cette page concerne l'année 1897 (MDCCCXCVII en chiffres romains) du calendrier grégorien. Chronologies Un des bronzes du Bénin conservés au British Museum.Données clés 1894 1895 1896  1897  1898 1899 1900Décennies :1860 1870 1880  1890  1900 1910 1920Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi,...

Centrica plcJenisPerusahaan publik terbatasKode emitenLSE: CNAIndustriUtilitasDidirikan17 February 1997KantorpusatWindsor, Berkshire, Britania RayaTokohkunciRichard Haythornthwaite(Chairman)Iain Conn(chief executive)Pendapatan£29,408 milyar (2014)[1]Laba operasi£1,568 milyar (2014)[1]Laba bersih£(1,005) milyar (2014)[1]AnakusahaLihat dibawahSitus webwww.centrica.com Centrica adalah sebuah perusahaan asal Britania Raya yang bergerak di sektor utilitas....

 

Heavy cruiser of the Suffren class For other ships with the same name, see French ship Colbert. Colbert History France NameColbert NamesakeJean Baptiste Colbert BuilderArsenal de Brest Laid down12 June 1927 Launched20 April 1928 Completed4 March 1931 Commissioned11 November 1929 In service1 April 1931 Out of servicescuttled at Toulon, 27 November 1942 FateScrapped 1948 General characteristics Class and typeSuffren-class cruiser Type Treaty Cruiser Marine National designation 1925 Light Cruise...

 

Rough version of a motion picture Frame captured from a digital editing workprint. The timecode on the left begins with a userbit designating the lab roll and the code on the right is a Keykode. A workprint is a rough version of a motion picture, used by the film editor(s) during the editing process. Such copies generally contain original recorded sound that will later be re-dubbed, stock footage as placeholders for missing shots or special effects, and animation tests for in-production anima...

Rosalyn Sussman YalowRosalyn Yalow (1977)Lahir(1921-07-19)19 Juli 1921New York City, New York, Amerika SerikatMeninggal30 Mei 2011(2011-05-30) (umur 89)[1]The Bronx, New York, Amerika SerikatKebangsaanAmerikaAlmamaterHunter CollegeUniversity of Illinois at Urbana–ChampaignDikenal atasRadioimmunoassay (RIA)Penghargaan1975 AMA Scientific Achievement Award 1976 Albert Lasker Award for Basic Medical Research1977 Penghargaan Nobel dalam Fisiologi atau Kedokteran 1988 National Medal...

 

Вадим Шипачёв В составе «Ак Барса» в 2023 году Позиция центральный нападающий Рост 183 см[1] Вес 86 кг Хват левый[d] Страна  Россия Дата рождения 12 марта 1987(1987-03-12)[1] (37 лет) Место рождения Череповец, Вологодская область, РСФСР, СССР[1] Драфт НХЛ не выбирался �...

 

American motorcycle racer For the main character of Yo-Kai Watch, see List of Yo-kai Watch characters § Main humans (Original series). This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Nate Adams – news · new...

Overview of country's geological attributes El Salvador is a country in Central America. Situated at the meeting point of three tectonic plates, it is highly seismologically active and the location of numerous earthquakes and volcanic eruptions. The country has a tropical climate.Geography of El SalvadorContinentNorth AmericaRegionCentral AmericaAreaRanked 148th • Total21,041 km2 (8,124 sq mi) • Land98.48% • Water1.52%Coastline307 km (19...

 

此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...

 

American comedy television series Carol's Second ActGenreSitcomCreated byEmily HalpernSarah HaskinsStarring Patricia Heaton Ito Aghayere Lucas Neff Jean-Luc Bilodeau Sabrina Jalees Ashley Tisdale Kyle MacLachlan Cedric Yarbrough Country of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes18ProductionExecutive producers Patricia Heaton Emily Halpern Sarah Haskins Aaron Kaplan Dana Honor Rebecca Stay Adam Griffin David Hunt Pamela Fryman Camera setupMulti-cameraRunning t...

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

Burgos Su BùrguKomuneComune di BurgosLokasi Burgos di Provinsi SassariNegaraItaliaWilayah SardiniaProvinsiSassari (SS)Pemerintahan • Wali kotaSalvatore ArrasLuas • Total18,08 km2 (6,98 sq mi)Ketinggian575 m (1,886 ft)Populasi (2016) • Total924[1]Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos07010Kode area telepon079Situs webhttp://www.comune.burgos.ss.it Burgos (bahasa Sardinia: Su Bùrgu) ad...

 

The Citadelle of Quebec is a National Historic Site of Canada,[1] and also forms part of the Fortifications of Québec National Historic Site of Canada.[1] The fortress is located within the Historic District of Old Québec, which was designated a World Heritage Site in 1985.[2] This is a list of forts in New France built by the French government or French chartered companies in what later became Canada, Saint Pierre and Miquelon, and the United States. They range fro...

Artikel ini menggunakan kata-kata yang berlebihan dan hiperbolis tanpa memberikan informasi yang jelas. Silakan buang istilah-istilah yang hiperbolis tersebut. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) PT Nojorono Tobacco InternationalSebelumnyaPT Nojorono Tobacco LimitedJenisSwastaIndustriRokokTembakauDidirikan14 Oktober 1932; 91 tahun lalu (1932-10-14)PendiriKo Djee Siong & Tan Djing ThayKantorpusatKabupaten Kudus, Jawa TengahProdukMinak DjinggoClas MildCl...

 

The One-Step was a ballroom dance popular in social dancing at the beginning of the 20th century. ¡Si vas a París, papá! Playⓘ Troy Kinney writes that One-Step originated from the Turkey Trot dance, with all mannerisms of the latter removed, so that of the original 'trot' nothing remains but the basic step.[1] The One-Step included the following basic figures (and a number of more advanced ones):[1] The Castle Walk (invented and introduced by Mr. and Mrs. Vernon Castle). ...