Roth's theorem on arithmetic progressions

Roth's theorem on arithmetic progressions is a result in additive combinatorics concerning the existence of arithmetic progressions in subsets of the natural numbers. It was first proven by Klaus Roth in 1953.[1] Roth's theorem is a special case of Szemerédi's theorem for the case .

Statement

A subset A of the natural numbers is said to have positive upper density if

.

Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression.

An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of . Let be the size of the largest subset of which contains no 3-term arithmetic progression.

Roth's theorem on arithmetic progressions (finitary version): .

Improving upper and lower bounds on is still an open research problem.

History

The first result in this direction was Van der Waerden's theorem in 1927, which states that for sufficiently large N, coloring the integers with colors will result in a term arithmetic progression.[2]

Later on in 1936 Erdős and Turán conjectured a much stronger result that any subset of the integers with positive density contains arbitrarily long arithmetic progressions. In 1942, Raphaël Salem and Donald C. Spencer provided a construction of a 3-AP-free set (i.e. a set with no 3-term arithmetic progressions) of size ,[3] disproving an additional conjecture of Erdős and Turán that for some .[4]

In 1953, Roth partially resolved the initial conjecture by proving they must contain an arithmetic progression of length 3 using Fourier analytic methods. Eventually, in 1975, Szemerédi proved Szemerédi's theorem using combinatorial techniques, resolving the original conjecture in full.

Proof techniques

The original proof given by Roth used Fourier analytic methods. Later on another proof was given using Szemerédi's regularity lemma.

Proof sketch via Fourier analysis

In 1953, Roth used Fourier analysis to prove an upper bound of . Below is a sketch of this proof.

Define the Fourier transform of a function to be the function satisfying

,

where .

Let be a 3-AP-free subset of . The proof proceeds in 3 steps.

  1. Show that a admits a large Fourier coefficient.
  2. Deduce that there exists a sub-progression of such that has a density increment when restricted to this subprogression.
  3. Iterate Step 2 to obtain an upper bound on .

Step 1

For functions, define

Counting Lemma Let satisfy . Define . Then .

The counting lemma tells us that if the Fourier Transforms of and are "close", then the number of 3-term arithmetic progressions between the two should also be "close." Let be the density of . Define the functions (i.e the indicator function of ), and . Step 1 can then be deduced by applying the Counting Lemma to and , which tells us that there exists some such that

.

Step 2

Given the from step 1, we first show that it's possible to split up into relatively large subprogressions such that the character is roughly constant on each subprogression.

Lemma 1: Let . Assume that for a universal constant . Then it is possible to partition into arithmetic progressions with length such that for all .

Next, we apply Lemma 1 to obtain a partition into subprogressions. We then use the fact that produced a large coefficient in step 1 to show that one of these subprogressions must have a density increment:

Lemma 2: Let be a 3-AP-free subset of , with and . Then, there exists a sub progression such that and .

Step 3

We now iterate step 2. Let be the density of after the th iteration. We have that and First, see that doubles (i.e. reach such that ) after at most steps. We double again (i.e reach ) after at most steps. Since , this process must terminate after at most steps.

Let be the size of our current progression after iterations. By Lemma 2, we can always continue the process whenever and thus when the process terminates we have that Also, note that when we pass to a subprogression, the size of our set decreases by a cube root. Therefore

Therefore so as desired.

Unfortunately, this technique does not generalize directly to larger arithmetic progressions to prove Szemerédi's theorem. An extension of this proof eluded mathematicians for decades until 1998, when Timothy Gowers developed the field of higher-order Fourier analysis specifically to generalize the above proof to prove Szemerédi's theorem.[5]

Proof sketch via graph regularity

Below is an outline of a proof using the Szemerédi regularity lemma.

Let be a graph and . We call an -regular pair if for all with , one has .

A partition of is an -regular partition if

.

Then the Szemerédi regularity lemma says that for every , there exists a constant such that every graph has an -regular partition into at most parts.

We can also prove that triangles between -regular sets of vertices must come along with many other triangles. This is known as the triangle counting lemma.

Triangle Counting Lemma: Let be a graph and be subsets of the vertices of such that are all -regular pairs for some . Let denote the edge densities respectively. If , then the number of triples such that form a triangle in is at least

.

Using the triangle counting lemma and the Szemerédi regularity lemma, we can prove the triangle removal lemma, a special case of the graph removal lemma.[6]

Triangle Removal Lemma: For all , there exists such that any graph on vertices with less than or equal to triangles can be made triangle-free by removing at most edges.

This has an interesting corollary pertaining to graphs on vertices where every edge of lies in a unique triangle. In specific, all of these graphs must have edges.

Take a set with no 3-term arithmetic progressions. Now, construct a tripartite graph whose parts are all copies of . Connect a vertex to a vertex if . Similarly, connect with if . Finally, connect with if .

This construction is set up so that if form a triangle, then we get elements that all belong to . These numbers form an arithmetic progression in the listed order. The assumption on then tells us this progression must be trivial: the elements listed above are all equal. But this condition is equivalent to the assertion that is an arithmetic progression in . Consequently, every edge of lies in exactly one triangle. The desired conclusion follows.

Extensions and generalizations

Szemerédi's theorem resolved the original conjecture and generalized Roth's theorem to arithmetic progressions of arbitrary length. Since then it has been extended in multiple fashions to create new and interesting results.

Furstenberg and Katznelson[7] used ergodic theory to prove a multidimensional version and Leibman and Bergelson[8] extended it to polynomial progressions as well. Most recently, Green and Tao proved the Green–Tao theorem which says that the prime numbers contain arbitrarily long arithmetic progressions. Since the prime numbers are a subset of density 0, they introduced a "relative" Szemerédi theorem which applies to subsets with density 0 that satisfy certain pseudorandomness conditions. Later on Conlon, Fox, and Zhao[9][10] strengthened this theorem by weakening the necessary pseudorandomness condition. In 2020, Bloom and Sisask[11] proved that any set such that diverges must contain arithmetic progressions of length 3; this is the first non-trivial case of another conjecture of Erdős postulating that any such set must in fact contain arbitrarily long arithmetic progressions.

Improving bounds

There has also been work done on improving the bound in Roth's theorem. The bound from the original proof of Roth's theorem showed that

for some constant . Over the years this bound has been continually lowered by Szemerédi,[12] Heath-Brown,[13] Bourgain,[14][15] and Sanders.[16][17] The current (July 2020) best bound is due to Bloom and Sisask[11] who have showed the existence of an absolute constant c>0 such that

In February 2023 a preprint[18][19] (later published[20]) by Kelley and Meka gave a new bound of:

.

Four days later, Bloom and Sisask published a preprint giving an exposition of the result[21] (later published[22]), simplifying the argument and yielding some additional applications. Several months later, Bloom and Sisask obtained a further improvement to , and stated (without proof) that their techniques can be used to show .[23]

There has also been work done on the other end, constructing the largest set with no 3-term arithmetic progressions. The best construction has barely been improved since 1946 when Behrend[24] improved on the initial construction by Salem and Spencer and proved

.

Due to no improvements in over 70 years, it is conjectured that Behrend's set is asymptotically very close in size to the largest possible set with no 3-term progressions.[11] If correct, the Kelley-Meka bound will prove this conjecture.

Roth's theorem in finite fields

As a variation, we can consider the analogous problem over finite fields. Consider the finite field , and let be the size of the largest subset of which contains no 3-term arithmetic progression. This problem is actually equivalent to the cap set problem, which asks for the largest subset of such that no 3 points lie on a line. The cap set problem can be seen as a generalization of the card game Set.

In 1982, Brown and Buhler[25] were the first to show that In 1995, Roy Mesuhlam[26] used a similar technique to the Fourier-analytic proof of Roth's theorem to show that This bound was improved to in 2012 by Bateman and Katz.[27]

In 2016, Ernie Croot, Vsevolod Lev, Péter Pál Pach, Jordan Ellenberg and Dion Gijswijt developed a new technique based on the polynomial method to prove that .[28][29][30]

The best known lower bound is , discovered in December 2023 by Google DeepMind researchers using a large language model (LLM).[31]

Another generalization of Roth's theorem shows that for positive density subsets, there not only exists a 3-term arithmetic progression, but that there exist many 3-APs all with the same common difference.

Roth's theorem with popular differences: For all , there exists some such that for every and with there exists some such that

If is chosen randomly from then we would expect there to be progressions for each value of . The popular differences theorem thus states that for each with positive density, there is some such that the number of 3-APs with common difference is close to what we would expect.

This theorem was first proven by Green in 2005,[32] who gave a bound of where is the tower function. In 2019, Fox and Pham recently improved the bound to [33]

A corresponding statement is also true in for both 3-APs and 4-APs.[34] However, the claim has been shown to be false for 5-APs.[35]

References

  1. ^ Roth, Klaus (1953). "On certain sets of integers". Journal of the London Mathematical Society. 28 (1): 104–109. doi:10.1112/jlms/s1-28.1.104.
  2. ^ van der Waerden, B. L. (1927). "Beweis einer Baudetschen Vermutung". Nieuw. Arch. Wisk. 15: 212–216.
  3. ^ Salem, Raphaël; Spencer, Donald C. (1942). "On sets of integers which contain no three terms in arithmetical progression". Proceedings of the National Academy of Sciences of the United States of America. 28 (12): 561–563. Bibcode:1942PNAS...28..561S. doi:10.1073/pnas.28.12.561. MR 0007405. PMC 1078539. PMID 16588588.
  4. ^ Erdös, Paul; Turán, Paul (1936). "On Some Sequences of Integers". Journal of the London Mathematical Society. 4 (4): 261–264. doi:10.1112/jlms/s1-11.4.261. MR 1574918.
  5. ^ Gowers, W. T. (1998). "A new proof of Szemerédi's theorem for arithmetic progressions of length four". Geometric and Functional Analysis. 8 (3): 529–551. doi:10.1007/s000390050065.
  6. ^ Fox, Jacob (2011), "A new proof of the graph removal lemma", Annals of Mathematics, Second Series, 174 (1): 561–579, arXiv:1006.1300, doi:10.4007/annals.2011.174.1.17, MR 2811609, S2CID 8250133
  7. ^ Furstenberg, Hillel; Katznelson, Yitzhak (1978). "An ergodic Szemerédi theorem for commuting transformations". Journal d'Analyse Mathématique. 38 (1): 275–291. doi:10.1007/BF02790016. MR 0531279. S2CID 123386017.
  8. ^ Bergelson, Vitaly; Leibman, Alexander (1996). "Polynomial extensions of van der Waerden's and Szemerédi's theorems". Journal of the American Mathematical Society. 9 (3): 725–753. doi:10.1090/S0894-0347-96-00194-4. MR 1325795.
  9. ^ Conlon, David; Fox, Jacob; Zhao, Yufei (2015). "A relative Szemerédi theorem". Geometric and Functional Analysis. 25 (3): 733–762. arXiv:1305.5440. doi:10.1007/s00039-015-0324-9. MR 3361771.
  10. ^ Zhao, Yufei (2014). "An arithmetic transference proof of a relative Szemerédi theorem". Mathematical Proceedings of the Cambridge Philosophical Society. 156 (2): 255–261. arXiv:1307.4959. Bibcode:2014MPCPS.156..255Z. doi:10.1017/S0305004113000662. MR 3177868. S2CID 119673319.
  11. ^ a b c Thomas F. Bloom, Olof Sisask, Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions, arXiv:2007.03528, 2020
  12. ^ Szemerédi, Endre (1990). "Integer sets containing no arithmetic progressions". Acta Mathematica Hungarica. 56 (1–2): 155–158. doi:10.1007/BF01903717. MR 1100788.
  13. ^ Heath-Brown, Roger (1987). "Integer sets containing no arithmetic progressions". Journal of the London Mathematical Society. 35 (3): 385–394. doi:10.1112/jlms/s2-35.3.385. MR 0889362.
  14. ^ Bourgain, Jean (1999). "On triples in arithmetic progression". Geometric and Functional Analysis. 9 (5): 968–984. doi:10.1007/s000390050105. MR 1726234. S2CID 392820.
  15. ^ Bourgain, Jean (2008). "Roth's theorem on progressions revisited". Journal d'Analyse Mathématique. 104 (1): 155–192. doi:10.1007/s11854-008-0020-x. MR 2403433. S2CID 16985451.
  16. ^ Sanders, Tom (2012). "On certain other sets of integers". Annals of Mathematics. 185 (1): 53–82. arXiv:1007.5444. doi:10.1007/s11854-012-0003-9. MR 2892617. S2CID 119727492.
  17. ^ Sanders, Tom (2011). "On Roth's theorem on progressions". Annals of Mathematics. 174 (1): 619–636. arXiv:1011.0104. doi:10.4007/annals.2011.174.1.20. MR 2811612. S2CID 53331882.
  18. ^ Kelley, Zander; Meka, Raghu (2023-02-10). "Strong Bounds for 3-Progressions". arXiv:2302.05537 [math.NT].
  19. ^ Sloman, Leila (2023-03-21). "Surprise Computer Science Proof Stuns Mathematicians". Quanta Magazine.
  20. ^ Kelley, Zander; Meka, Raghu (2023-11-06). "Strong Bounds for 3-Progressions". 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS). IEEE. pp. 933–973. arXiv:2302.05537. doi:10.1109/FOCS57990.2023.00059. ISBN 979-8-3503-1894-4.
  21. ^ Bloom, Thomas F.; Sisask, Olof (2023-02-14). "The Kelley–Meka bounds for sets free of three-term arithmetic progressions". Essential Number Theory. 2: 15–44. arXiv:2302.07211. doi:10.2140/ent.2023.2.15.
  22. ^ Bloom, Thomas F.; Sisask, Olof (2023-12-31). "The Kelley–Meka bounds for sets free of three-term arithmetic progressions". Essential Number Theory. 2 (1): 15–44. arXiv:2302.07211. doi:10.2140/ent.2023.2.15. ISSN 2834-4634.
  23. ^ Bloom, Thomas F.; Sisask, Olof (2023-09-05). "An improvement to the Kelley-Meka bounds on three-term arithmetic progressions". arXiv:2309.02353 [math.NT].
  24. ^ Behrend, F. A. (1946). "On sets of integers which contain no three terms in arithmetical progression". Proceedings of the National Academy of Sciences of the United States of America. 32 (12): 331–332. Bibcode:1946PNAS...32..331B. doi:10.1073/pnas.32.12.331. PMC 1078964. PMID 16578230.
  25. ^ Brown, T. C.; Buhler, J. P. (1982). "A density version of a geometric Ramsey theorem". Journal of Combinatorial Theory. Series A. 32 (1): 20–34. doi:10.1016/0097-3165(82)90062-0.
  26. ^ Mesuhlam, Roy (1995). "On subsets of finite abelian groups with no 3-term arithmetic progressions". Journal of Combinatorial Theory. Series A. 71 (1): 168–172. doi:10.1016/0097-3165(95)90024-1.
  27. ^ Bateman, M.; Katz, N. (2012). "New bounds on cap sets". Journal of the American Mathematical Society. 25 (2): 585–613. doi:10.1090/S0894-0347-2011-00725-X. hdl:2022/19057.
  28. ^ Ellenberg, Jordan S.; Gijswijt, Dion (2016). "On large subsets of with no three-term arithmetic progression". Annals of Mathematics, Second Series. 185 (1): 339–343. arXiv:1605.09223. doi:10.4007/annals.2017.185.1.8. S2CID 119683140.
  29. ^ Croot, Ernie; Lev, Vsevolod F.; Pach, Péter Pál (2017). "Progression-free sets in are exponentially small". Annals of Mathematics. 2nd series. 185 (1): 331–337. arXiv:1605.01506. doi:10.4007/annals.2017.185.1.7.
  30. ^ Klarreich, Erica (May 31, 2016). "Simple Set Game Proof Stuns Mathematicians". Quanta.
  31. ^ Romera-Paredes, Bernardino; Barekatain, Mohammadamin; Novikov, Alexander; Balog, Matej; Kumar, M. Pawan; Dupont, Emilien; Ruiz, Francisco J. R.; Ellenberg, Jordan S.; Wang, Pengming; Fawzi, Omar; Kohli, Pushmeet; Fawzi, Alhussein (2023-12-14). "Mathematical discoveries from program search with large language models". Nature. 625 (7995): 468–475. doi:10.1038/s41586-023-06924-6. ISSN 1476-4687. PMC 10794145. PMID 38096900.
  32. ^ Green, Ben (2005). "A Szemerédi-type regularity lemma in abelian groups, with applications". Geometric and Functional Analysis. 15 (2): 340–376. doi:10.1007/s00039-005-0509-8. MR 2153903.
  33. ^ Fox, Jacob; Pham, Huy Tuan (April 2021). "Popular progression differences in vector spaces". International Mathematics Research Notices. 2021 (7): 5261–5289. arXiv:1708.08482. Bibcode:2017arXiv170808482F. doi:10.1093/imrn/rny240.
  34. ^ Green, Ben; Tao, Terrence (2010). "An Arithmetic Regularity Lemma, an Associated Counting Lemma, and Applications". An Irregular Mind. Bolyai Society Mathematical Studies. Vol. 21. Bolyai Society Mathematical Studies. pp. 261–334. arXiv:1002.2028. Bibcode:2010arXiv1002.2028G. doi:10.1007/978-3-642-14444-8_7. ISBN 978-3-642-14443-1. S2CID 115174575.
  35. ^ Bergelson, Vitaly; Host, Bernard; Kra, Bryna (2005). "Multiple recurrence and nilsequences. With an appendix by Imre Ruzsa". Inventiones Mathematicae. 160 (2): 261–303. doi:10.1007/s00222-004-0428-6. S2CID 1380361.

Read other articles:

PT Holiawisata IndahNama dagangAladinTravelSebelumnya:MNC Travel (2011-2021)JenisPublikIndustriTravel dan PariwisataDidirikan14 Agustus 2011KantorpusatJakarta, IndonesiaCabang4 Kantor CabangTokohkunciVeranika Gunawan (CEO)ProdukTravelPemilikMNC e-Commerce (2011-2021)MNC Aladin Indonesia (2021-sekarang)Situs webwww.mnctravel.co.id PT Holiawisata Indah atau AladinTravel adalah salah satu perusahaan terbatas dengan kegiatan usaha meliputi jasa pelayanan dalam bidang pariwisata, pengurusan dokume...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. 居酒屋ゆうれいIzakaya YuureiSutradaraTakayoshi WatanabeDitulis olehYozo TanakaMasayo Yamamoto (novel)PemeranKen'ichi HagiwaraShigeru MuroiTomoko YamaguchiPenata musikShigeru UmebayashiSinematograferJun'ichi FujisawaPenyuntingAkira SuzukiP...

 

Victorian era English stage actress Not to be confused with Jennie Lee (American actress). Jennie Lee by Henry Macbeth-Raeburnin 1886 as Jo Jennie Lee (c. 1854[1][2] – 3 May 1930) was a Victorian Era English stage actress, singer and dancer whose career was largely entwined with the title role in Jo, a melodrama[3] her husband, John Pringle Burnett,[4] wove around a relatively minor character from the Charles Dickens novel, Bleak House. She made her stage deb...

Katedral KathmanduKatedral Santa Perawan Maria Diangkat ke SurgaKatedral KathmanduLokasiKathmanduNegara   NepalDenominasiGereja Katolik RomaAdministrasiKeuskupanVikariat Apostolik Nepal Katedral Santa Perawan Maria Diangkat ke Surga[1] atau secara singkat disebut Katedral Kathmandu adalah sebuah gereja katedral Katolik yang terletak di kota Kathmandu,[2] ibu kota Nepal .[3] Katedral ini mulanya bernama Gereja Bunda Maria Diangkat Ke Surga yang ditahbiska...

 

باولو توديتشيني معلومات شخصية الميلاد 22 سبتمبر 1920(1920-09-22)ميلانو الوفاة 30 مارس 1993 (عن عمر ناهز 72 عاماً)ميلانو الطول 1.83 م (6 قدم 0 بوصة) مركز اللعب وسط الجنسية إيطاليا (18 يونيو 1946–30 مارس 1993) مملكة إيطاليا (22 سبتمبر 1920–18 يونيو 1946)  مسيرة الشباب سنوات فريق Scarioni إيه سي م...

 

Phrase referring to historical incidents For other uses, see Shot heard round the world (disambiguation). Ralph Waldo Emerson, whose 1837 poem Concord Hymn included the phrase. The shot heard round the world is a phrase that refers to the opening shot of the battles of Lexington and Concord on April 19, 1775, which sparked the American Revolutionary War and led to the creation of the United States. It originates from the opening stanza of Ralph Waldo Emerson's 1837 poem Concord Hymn. The phra...

For other uses, see Brooklyn Heights (disambiguation). Neighborhood of Brooklyn in New York CityBrooklyn HeightsNeighborhood of BrooklynTownhouses in Brooklyn HeightsLocation in New York CityCoordinates: 40°41′46″N 73°59′42″W / 40.696°N 73.995°W / 40.696; -73.995Country United StatesState New YorkCityNew York CityBoroughBrooklynCommunity DistrictBrooklyn 2[1]Languages[2] List 82.5% English3.6% Spanish2.8% French2.3% Chinese1.8% Ko...

 

Saint-Maurice-la-ClouèrecomuneSaint-Maurice-la-Clouère – Veduta LocalizzazioneStato Francia Regione Nuova Aquitania Dipartimento Vienne ArrondissementMontmorillon CantoneLussac-les-Châteaux TerritorioCoordinate46°22′N 0°25′E / 46.366667°N 0.416667°E46.366667; 0.416667 (Saint-Maurice-la-Clouère)Coordinate: 46°22′N 0°25′E / 46.366667°N 0.416667°E46.366667; 0.416667 (Saint-Maurice-la-Clouère) Superficie39,67 km² Abitanti1...

 

Федеральное агентство по делам Содружества Независимых Государств, соотечественников, проживающих за рубежом, и по международному гуманитарному сотрудничествусокращённо: Россотрудничество Общая информация Страна  Россия Юрисдикция Россия Дата создания 6 сентября...

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

Student demonstration in 1817 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Wartburg Festival – news · newspapers · books · scholar · JSTOR (September 2015) (Learn how and when to remove this message) Students marching to the Wartburg in 1817 The first Wartburg Festival (German: Wartburgfest) was a convent...

US-based non-profit organization International Crane FoundationA blue crane at the International Crane FoundationLocationE11376 Shady Lane Rd,Baraboo, Wisconsin, 53913Coordinates43°32′52″N 89°45′23″W / 43.5477°N 89.7563°W / 43.5477; -89.7563Area240 acres (97 ha)Established1973Websitesavingcranes.org The International Crane Foundation (ICF) is a non-profit conservation organization that works to conserve cranes and the ecosystems, watersheds, and flyway...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of United States Marine Corps air support squadrons – news · newspapers · books · scholar · JSTOR (March 2024) (Learn how and when to remove this message) This is a list of the current and decommissioned air support squadrons in the United States Marine C...

 

Pakistani jurist (1943–2021) Syed Ali Aslam Jafriسید علی اسلم جعفریJudge of High Court of SindhIn office10 October 2000 – 13 October 2005Advocate of Supreme Court of PakistanIn office30 April 1984Advocate of Sindh High CourtIn office16 April 1972Federal Ombudsman for InsuranceIn office21 April 2006 – 30 April 2010Director General of Sindh Judicial AcademyIn office2018–2019Principal of Sindh Muslim Law CollegeIn office2019–2021 Personal detailsBorn(19...

Pour les articles homonymes, voir Rue de Thionville. Cet article est une ébauche concernant Paris. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. 19e arrtRue de Thionville Rue de Thionville depuis la Petite Ceinture. Situation Arrondissement 19e Quartier Pont-de-Flandre Début 150, rue de Crimée Fin 1, quai de Metz Morphologie Longueur 562 m Largeur 10 à 18 m Géocodification Ville de Paris 92...

 

Fountaingrove Round Barn, built while Kanaye Nagasawa ran the Fountaingrove estate. The historic building was destroyed on October 9, 2017, during the Tubbs Fire. Fountain Grove was a utopian colony founded near Santa Rosa, California, by Thomas Lake Harris in 1875.[1] Most of its settlers were followers of Harris's Brotherhood of the New Life and moved with Harris from their previous colony at Brocton, New York. The neighborhood now refers to the modern-day Fountaingrove, in north Sa...