Rogers–Ramanujan continued fraction

The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.

Domain coloring representation of the convergent of the function , where is the Rogers–Ramanujan continued fraction.

Definition

Representation of the approximation of the Rogers–Ramanujan continued fraction.

Given the functions and appearing in the Rogers–Ramanujan identities, and assume ,

and,

with the coefficients of the q-expansion being OEISA003114 and OEISA003106, respectively, where denotes the infinite q-Pochhammer symbol, j is the j-function, and 2F1 is the hypergeometric function. The Rogers–Ramanujan continued fraction is then

is the Jacobi symbol.

One should be careful with notation since the formulas employing the j-function will be consistent with the other formulas only if (the square of the nome) is used throughout this section since the q-expansion of the j-function (as well as the well-known Dedekind eta function) uses . However, Ramanujan, in his examples to Hardy and given below, used the nome instead.[citation needed]

Special values

If q is the nome or its square, then and , as well as their quotient , are related to modular functions of . Since they have integral coefficients, the theory of complex multiplication implies that their values for involving an imaginary quadratic field are algebraic numbers that can be evaluated explicitly.

Examples of R(q)

Given the general form where Ramanujan used the nome ,

f when ,

when ,

when ,

when ,

when ,

when ,

when ,

and is the golden ratio. Note that is a positive root of the quartic equation,

while and are two positive roots of a single octic,

(since has a square root) which explains the similarity of the two closed-forms. More generally, for positive integer m, then and are two roots of the same equation as well as,

The algebraic degree k of for is (OEISA082682).

Incidentally, these continued fractions can be used to solve some quintic equations as shown in a later section.

Examples of G(q) and H(q)

Interestingly, there are explicit formulas for and in terms of the j-function and the Rogers-Ramanujan continued fraction . However, since uses the nome's square , then one should be careful with notation such that and use the same .

Of course, the secondary formulas imply that and are algebraic numbers (though normally of high degree) for involving an imaginary quadratic field. For example, the formulas above simplify to,

and,

and so on, with as the golden ratio.

Derivation of special values

Tangential sums

In the following we express the essential theorems of the Rogers-Ramanujan continued fractions R and S by using the tangential sums and tangential differences:

The elliptic nome and the complementary nome have this relationship to each other:

The complementary nome of a modulus k is equal to the nome of the Pythagorean complementary modulus:

These are the reflection theorems for the continued fractions R and S:

The letter represents the Golden number exactly:

The theorems for the squared nome are constructed as follows:

Following relations between the continued fractions and the Jacobi theta functions are given:

Derivation of Lemniscatic values

Into the now shown theorems certain values are inserted:

Therefore following identity is valid:

In an analogue pattern we get this result:

Therefore following identity is valid:

Furthermore we get the same relation by using the above mentioned theorem about the Jacobi theta functions:

This result appears because of the Poisson summation formula and this equation can be solved in this way:

By taking the other mentioned theorem about the Jacobi theta functions a next value can be determined:

That equation chain leads to this tangential sum:

And therefore following result appears:

In the next step we use the reflection theorem for the continued fraction R again:

And a further result appears:

Derivation of Non-Lemniscatic values

The reflection theorem is now used for following values:

The Jacobi theta theorem leads to a further relation:

By tangential adding the now mentioned two theorems we get this result:

By tangential substraction that result appears:

In an alternative solution way we use the theorem for the squared nome:

Now the reflection theorem is taken again:

The insertion of the last mentioned expression into the squared nome theorem gives that equation:

Erasing the denominators gives an equation of sixth degree:

The solution of this equation is the already mentioned solution:

Relation to modular forms

can be related to the Dedekind eta function, a modular form of weight 1/2, as,[1]

The Rogers-Ramanujan continued fraction can also be expressed in terms of the Jacobi theta functions. Recall the notation,

The notation is slightly easier to remember since , with even subscripts on the LHS. Thus,

Note, however, that theta functions normally use the nome q = eiπτ, while the Dedekind eta function uses the square of the nome q = e2iπτ, thus the variable x has been employed instead to maintain consistency between all functions. For example, let so . Plugging this into the theta functions, one gets the same value for all three R(x) formulas which is the correct evaluation of the continued fraction given previously,

One can also define the elliptic nome,

The small letter k describes the elliptic modulus and the big letter K describes the complete elliptic integral of the first kind. The continued fraction can then be also expressed by the Jacobi elliptic functions as follows:

with

Relation to j-function

One formula involving the j-function and the Dedekind eta function is this:

where Since also,

Eliminating the eta quotient between the two equations, one can then express j(τ) in terms of as,

where the numerator and denominator are polynomial invariants of the icosahedron. Using the modular equation between and , one finds that,

Let , then

where

which in fact is the j-invariant of the elliptic curve,

parameterized by the non-cusp points of the modular curve .

Functional equation

For convenience, one can also use the notation when q = e2πiτ. While other modular functions like the j-invariant satisfies,

and the Dedekind eta function has,

the functional equation of the Rogers–Ramanujan continued fraction involves[2] the golden ratio ,

Incidentally,

Modular equations

There are modular equations between and . Elegant ones for small prime n are as follows.[3]

For , let and , then


For , let and , then


For , let and , then


Or equivalently for , let and and , then


For , let and , then


Regarding , note that

Other results

Ramanujan found many other interesting results regarding .[4] Let , and as the golden ratio.

If then,

If then,

The powers of also can be expressed in unusual ways. For its cube,

where

For its fifth power, let , then,

Quintic equations

The general quintic equation in Bring-Jerrard form:

for every real value can be solved in terms of Rogers-Ramanujan continued fraction and the elliptic nome

To solve this quintic, the elliptic modulus must first be determined as

Then the real solution is

where . Recall in the previous section the 5th power of can be expressed by :

Example 1

Transform to,

thus,

and the solution is:

and can not be represented by elementary root expressions.

Example 2

thus,

Given the more familiar continued fractions with closed-forms,

with golden ratio and the solution simplifies to

References

  1. ^ Duke, W. "Continued Fractions and Modular Functions", https://www.math.ucla.edu/~wdduke/preprints/bams4.pdf
  2. ^ Duke, W. "Continued Fractions and Modular Functions" (p.9)
  3. ^ Berndt, B. et al. "The Rogers–Ramanujan Continued Fraction", http://www.math.uiuc.edu/~berndt/articles/rrcf.pdf
  4. ^ Berndt, B. et al. "The Rogers–Ramanujan Continued Fraction"
  • Rogers, L. J. (1894), "Second Memoir on the Expansion of certain Infinite Products", Proc. London Math. Soc., s1-25 (1): 318–343, doi:10.1112/plms/s1-25.1.318
  • Berndt, B. C.; Chan, H. H.; Huang, S. S.; Kang, S. Y.; Sohn, J.; Son, S. H. (1999), "The Rogers–Ramanujan continued fraction" (PDF), Journal of Computational and Applied Mathematics, 105 (1–2): 9–24, doi:10.1016/S0377-0427(99)00033-3

Read other articles:

Sungai JeneberangJe’ne’ Berang, River Gowa, Djene Berang, Soengai BeerangLokasi mulut sungaiTampilkan peta SulawesiSungai Jeneberang (Indonesia)Tampilkan peta IndonesiaLokasiNegaraIndonesiaProvinsiSulawesi SelatanCiri-ciri fisikHulu sungaiGunung Bawakaraeng - elevasi2.833 m (9.295 ft) dpl Muara sungaiSelat MakassarPanjang80 km (50 mi)Daerah Aliran SungaiSistem sungaiDAS Jeneberang (DAS521281)[1]Luas DAS790 km2 (310 sq mi)[1]Info...

 

 

Sukhoi Su-24Su-24 Soviet dengan roda diturunkan.TipePesawat serang daratProdusenSukhoiTerbang perdanaDesember 1971Diperkenalkan1974StatusAktifPengguna utamaRusiaPengguna lainIranSiriaJumlah produksi1200+ Sukhoi Su-24 pada MAKS Airshow 2005. Sukhoi Su-24 (kode NATO: 'Fencer') adalah sebuah pesawat penyerang segala cuaca supersonik Uni Soviet yang paling maju pada tahun 1970-1980an. Pesawat ini diawaki dua orang, mempunyai dua mesin dan merupakan pesawat Soviet pertama yang memiliki perangkat n...

 

 

Pour les articles homonymes, voir Sentinelle. Cet article concerne un événement en cours. Ces informations peuvent manquer de recul, changer à mesure que l’événement progresse ou ne pas prendre en compte des développements récents. Le titre lui-même peut être provisoire. N’hésitez pas à l’améliorer en veillant à citer vos sources.La dernière modification de cette page a été faite le 27 mars 2024 à 17:58. Opération Sentinelle Pendant le plan Vigipirate Emblème de l'op...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

 

Sungai JubbaPeta aliran lembah sungai Jubba/ShebelleLokasiNegaraSomaliaEtiopiaCiri-ciri fisikHulu sungai  - lokasiPertemuan Sungai Dawa dan Sungai Ganale Dorya - koordinat4°10′38″N 42°04′51″E / 4.1771°N 42.0809°E / 4.1771; 42.0809 Muara sungai  - lokasiLaut Somali - koordinat0°14′58″S 42°37′51″E / 0.2495°S 42.6307°E / -0.2495; 42.6307Koordinat: 0°14′58″S 42°37′51�...

 

 

Pour un article plus général, voir Tour d'Espagne 2021. 8e étape du Tour d'Espagne 2021 GénéralitésCourse8e étape، Tour d'Espagne 2021Type Étape de plaineDate21 août 2021Distance173,7 kmPays EspagneLieu de départSanta PolaLieu d'arrivéeLa Manga del Mar MenorVitesse moyenne44,145 km/hDénivelé923 mRésultats de l’étape1er Fabio Jakobsen3 h 56 min 05 s(Deceuninck-Quick Step)2e Alberto Dainese+ 0 s3e Jasper Philipsen+ 0 s Aritz Bagües(Caja Rural-Seguros RGA)Classement général...

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Gruppo Sportivo Motori Alimentatori Trasformatori Elettrici Roma. Gruppo Sportivo M.A.T.E.R.Stagione 1938-1939Sport calcio Squadra MATER Allenatore Cesare Migliorini Presidente Valentino Cortini Serie C1º posto nel girone G, 4º posto girone finale B. 1937-1938 ...

 

 

MannokCompany typePrivately ownedIndustryBuilding construction & manufacturing, hospitality & property managementFounded1973 as Quinn Group2013 as Aventas Group2014 as Quinn Industrial HoldingsHeadquartersDerrylin, County Fermanagh, Northern IrelandProductsContainer glass, domestic and specification radiators, cement, tarmac, thermal blocks, rooftiles, prestressed concrete, polyurethane & polystyrene insulation, packagingWebsitemannokholdings.com Mannok, formerly the QUINN group,...

 

 

Pour les articles homonymes, voir Samarie (homonymie). Pour l’article ayant un titre homophone, voir Samary. Samarie Ruines hellénistiques de la ville de Samarie, ancienne capitale du royaume d'Israël. Pays Palestine Israël Coordonnées 32° 08′ 35″ nord, 35° 15′ 38″ est Situation de la Samarie parmi les régions antiques d'Israël et de Palestine Géolocalisation sur la carte : Israël Samarie modifier  Carte du XVIe siècle, avec l...

Untuk kapal lain dengan nama serupa, lihat USS Nashville. USS Nashville (CL-43), di lepas Galangan Kapal Angkatan Laut Pulau Mare, California, pada 4 Agustus 1943. USS Nashville (CL-43), adalah sebuah kapal jelajah ringan dari kelas Brooklyn, yang dibuat pada 24 Januari 1935 oleh New York Shipbuilding Corporation, Camden, New Jersey; diluncurkan pada 2 Oktober 1937; disponsori oleh Misses Ann dan Mildred Stahlman; dan dikomisikan pada 6 Juni 1938, Kapten William W. Wilson mengkomandoinya.[...

 

 

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

 

Peta lokasi Southern Rivers adalah sebuah wilayah region di sebelah barat laut negara bagian Georgia, Amerika Serikat. Geografi Region Southern Rivers terdiri atas county-county berikut: Baker Berrien Brooks Chattahoochee Clay Colquitt Cook Coweta Crisp Decatur Dooly Dougherty Early Echols Fayette Grady Harris Heard Irwin Lanier Lee Lowndes Macon Meriwether Miller Muscogee Pike Quitman Randolph Schley Seminole Spalding Stewart Sumter Talbot Taylor Terrell Thomas Tift Troup Turner Upson Worth ...

 

 

  لمعانٍ أخرى، طالع ليفرمور (توضيح). ليفرمور     الإحداثيات 42°52′01″N 94°11′03″W / 42.866944444444°N 94.184166666667°W / 42.866944444444; -94.184166666667   [1] تاريخ التأسيس 1882  تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة هومبولت  خصائص جغرافية  ا�...

US Health control procedure against COVID-19 A crowd of Bay Area Rapid Transit riders in June 2020 following CDC face mask guidelines at Milpitas station in Milpitas, California. A sign offering free COVID-19 face masks at a retailer in the United States. The wearing of non-medical face masks in public to lessen the transmission of COVID-19 in the United States was first recommended by the CDC on April 3, 2020, as supplemental to hygiene and appropriate social distancing. Throughout the pande...

 

 

American composer and conductor (1900–1990) Aaron CoplandBorn(1900-11-14)November 14, 1900New York City, U.S.DiedDecember 2, 1990(1990-12-02) (aged 90)North Tarrytown, New York, U.S.WorksAppalachian SpringBilly the KidFanfare for the Common ManmoreSignature Aaron Copland (/ˈkoʊplənd/, KOHP-lənd;[1][2] November 14, 1900 – December 2, 1990) was an American composer, critic, writer, teacher, pianist and later a conductor of his own and other American mus...

 

 

Questa voce o sezione sull'argomento poeti non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Magtymguly Pyragy (Hajji Qushan, 18 maggio 1724 – 1807) è stato un poeta turkmeno. Indice 1 Opera 2 Note 3 Altri progetti 4 Collegamenti esterni Opera Leader spirituale del Turkmenistan, fu promotore dell'idea di...

2012 compilation album by the Weeknd TrilogyCompilation album by the WeekndReleasedNovember 13, 2012 (2012-11-13)Studio Dream House Site Sound Sterling Road (Toronto) GenreAlternative R&B[1]Length159:35Label XO Republic Producer Clams Casino Doc McKinney Dream Machine DropxLife Illangelo Jeremy Rose Rainer The Weeknd the Weeknd chronology Echoes of Silence(2011) Trilogy(2012) Kiss Land(2013) Singles from Trilogy Wicked GamesReleased: October 22, 2012 Twenty Eigh...

 

 

Elisabeth Kübler-RossBerkas:Kubler.jpgElisabeth Kübler-RossLahir(1926-07-08)8 Juli 1926Zürich, SwissMeninggal24 Agustus 2004(2004-08-24) (umur 78)Scottsdale, Arizona, Amerika SerikatDikenal atasModel Kübler-RossKarier ilmiahBidangPsychiatryInstitusiUniversity of ChicagoMenginspirasiCaroline Myss, Vern Barnet, Bruce Greyson, Sogyal Rinpoche Potret Elisabeth Kübler-Ross, 1987 Elisabeth Kübler-Ross, M.D. (8 Juli 1926 – 24 Agustus 2004) adalah seorang psikiater dan pen...