Rise time

In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value.[1] These values may be expressed as ratios[2] or, equivalently, as percentages[3] with respect to a given reference value. In analog electronics and digital electronics,[citation needed] these percentages are commonly the 10% and 90% (or equivalently 0.1 and 0.9) of the output step height:[4] however, other values are commonly used.[5] For applications in control theory, according to Levine (1996, p. 158), rise time is defined as "the time required for the response to rise from x% to y% of its final value", with 0% to 100% rise time common for underdamped second order systems, 5% to 95% for critically damped and 10% to 90% for overdamped ones.[6] According to Orwiler (1969, p. 22), the term "rise time" applies to either positive or negative step response, even if a displayed negative excursion is popularly termed fall time.[7]

Overview

Rise time is an analog parameter of fundamental importance in high speed electronics, since it is a measure of the ability of a circuit to respond to fast input signals.[8] There have been many efforts to reduce the rise times of circuits, generators, and data measuring and transmission equipment. These reductions tend to stem from research on faster electron devices and from techniques of reduction in stray circuit parameters (mainly capacitances and inductances). For applications outside the realm of high speed electronics, long (compared to the attainable state of the art) rise times are sometimes desirable: examples are the dimming of a light, where a longer rise-time results, amongst other things, in a longer life for the bulb, or in the control of analog signals by digital ones by means of an analog switch, where a longer rise time means lower capacitive feedthrough, and thus lower coupling noise to the controlled analog signal lines.

Factors affecting rise time

For a given system output, its rise time depend both on the rise time of input signal and on the characteristics of the system.[9]

For example, rise time values in a resistive circuit are primarily due to stray capacitance and inductance. Since every circuit has not only resistance, but also capacitance and inductance, a delay in voltage and/or current at the load is apparent until the steady state is reached. In a pure RC circuit, the output risetime (10% to 90%) is approximately equal to 2.2 RC.[10]

Alternative definitions

Other definitions of rise time, apart from the one given by the Federal Standard 1037C (1997, p. R-22) and its slight generalization given by Levine (1996, p. 158), are occasionally used:[11] these alternative definitions differ from the standard not only for the reference levels considered. For example, the time interval graphically corresponding to the intercept points of the tangent drawn through the 50% point of the step function response is occasionally used.[12] Another definition, introduced by Elmore (1948, p. 57),[13] uses concepts from statistics and probability theory. Considering a step response V(t), he redefines the delay time tD as the first moment of its first derivative V′(t), i.e.

Finally, he defines the rise time tr by using the second moment

Rise time of model systems

Notation

All notations and assumptions required for the analysis are listed here.

  • Following Levine (1996, p. 158, 2011, 9-3 (313)), we define x% as the percentage low value and y% the percentage high value respect to a reference value of the signal whose rise time is to be estimated.
  • t1 is the time at which the output of the system under analysis is at the x% of the steady-state value, while t2 the one at which it is at the y%, both measured in seconds.
  • tr is the rise time of the analysed system, measured in seconds. By definition,
  • fL is the lower cutoff frequency (-3 dB point) of the analysed system, measured in hertz.
  • fH is higher cutoff frequency (-3 dB point) of the analysed system, measured in hertz.
  • h(t) is the impulse response of the analysed system in the time domain.
  • H(ω) is the frequency response of the analysed system in the frequency domain.
  • The bandwidth is defined as and since the lower cutoff frequency fL is usually several decades lower than the higher cutoff frequency fH,
  • All systems analyzed here have a frequency response which extends to 0 (low-pass systems), thus exactly.
  • For the sake of simplicity, all systems analysed in the "Simple examples of calculation of rise time" section are unity gain electrical networks, and all signals are thought as voltages: the input is a step function of V0 volts, and this implies that
  • ζ is the damping ratio and ω0 is the natural frequency of a given second order system.

Simple examples of calculation of rise time

The aim of this section is the calculation of rise time of step response for some simple systems:

Gaussian response system

A system is said to have a Gaussian response if it is characterized by the following frequency response

where σ > 0 is a constant,[14] related to the high cutoff frequency by the following relation:

Even if this kind frequency response is not realizable by a causal filter,[15] its usefulness lies in the fact that behaviour of a cascade connection of first order low pass filters approaches the behaviour of this system more closely as the number of cascaded stages asymptotically rises to infinity.[16] The corresponding impulse response can be calculated using the inverse Fourier transform of the shown frequency response

Applying directly the definition of step response,

To determine the 10% to 90% rise time of the system it is necessary to solve for time the two following equations:

By using known properties of the error function, the value t = −t1 = t2 is found: since tr = t2 - t1 = 2t,

and finally

[17]

One-stage low-pass RC network

For a simple one-stage low-pass RC network,[18] the 10% to 90% rise time is proportional to the network time constant τ = RC:

The proportionality constant can be derived from the knowledge of the step response of the network to a unit step function input signal of V0 amplitude:

Solving for time

and finally,

Since t1 and t2 are such that

solving these equations we find the analytical expression for t1 and t2:

The rise time is therefore proportional to the time constant:[19]

Now, noting that

[20]

then

and since the high frequency cutoff is equal to the bandwidth,

[17]

Finally note that, if the 20% to 80% rise time is considered instead, tr becomes:

One-stage low-pass LR network

Even for a simple one-stage low-pass RL network, the 10% to 90% rise time is proportional to the network time constant τ = LR. The formal proof of this assertion proceed exactly as shown in the previous section: the only difference between the final expressions for the rise time is due to the difference in the expressions for the time constant τ of the two different circuits, leading in the present case to the following result

Rise time of damped second order systems

According to Levine (1996, p. 158), for underdamped systems used in control theory rise time is commonly defined as the time for a waveform to go from 0% to 100% of its final value:[6] accordingly, the rise time from 0 to 100% of an underdamped 2nd-order system has the following form:[21]

The quadratic approximation for normalized rise time for a 2nd-order system, step response, no zeros is:

where ζ is the damping ratio and ω0 is the natural frequency of the network.

Rise time of cascaded blocks

Consider a system composed by n cascaded non interacting blocks, each having a rise time tri, i = 1,…,n, and no overshoot in their step response: suppose also that the input signal of the first block has a rise time whose value is trS.[22] Afterwards, its output signal has a rise time tr0 equal to

According to Valley & Wallman (1948, pp. 77–78), this result is a consequence of the central limit theorem and was proved by Wallman (1950):[23][24] however, a detailed analysis of the problem is presented by Petitt & McWhorter (1961, §4–9, pp. 107–115),[25] who also credit Elmore (1948) as the first one to prove the previous formula on a somewhat rigorous basis.[26]

See also

Notes

  1. ^ "rise time", Federal Standard 1037C, August 7, 1996
  2. ^ See for example (Cherry & Hooper 1968, p.6 and p.306), (Millman & Taub 1965, p. 44) and (Nise 2011, p. 167).
  3. ^ See for example Levine (1996, p. 158), (Ogata 2010, p. 170) and (Valley & Wallman 1948, p. 72).
  4. ^ See for example (Cherry & Hooper 1968, p. 6 and p. 306), (Millman & Taub 1965, p. 44) and (Valley & Wallman 1948, p. 72).
  5. ^ For example Valley & Wallman (1948, p. 72, footnote 1) state that "For some applications it is desirable to measure rise time between the 5 and 95 per cent points or the 1 and 99 per cent points.".
  6. ^ a b Precisely, Levine (1996, p. 158) states: "The rise time is the time required for the response to rise from x% to y% of its final value. For overdamped second order systems, the 0% to 100% rise time is normally used, and for underdamped systems (...) the 10% to 90% rise time is commonly used". However, this statement is incorrect since the 0%–100% rise time for an overdamped 2nd order control system is infinite, similarly to the one of an RC network: this statement is repeated also in the second edition of the book (Levine 2011, p. 9-3 (313)).
  7. ^ Again according to Orwiler (1969, p. 22).
  8. ^ According to Valley & Wallman (1948, p. 72), "The most important characteristics of the reproduction of a leading edge of a rectangular pulse or step function are the rise time, usually measured from 10 to 90 per cent, and the "overshoot"". And according to Cherry & Hooper (1968, p. 306), "The two most significant parameters in the square-wave response of an amplifier are its rise time and percentage tilt".
  9. ^ See (Orwiler 1969, pp. 27–29) and the "Rise time of cascaded blocks" section.
  10. ^ See for example (Valley & Wallman 1948, p. 73), (Orwiler 1969, p. 22 and p. 30) or the "One-stage low-pass RC network" section.
  11. ^ See (Valley & Wallman 1948, p. 72, footnote 1) and (Elmore 1948, p. 56).
  12. ^ See (Valley & Wallman 1948, p. 72, footnote 1) and (Elmore 1948, p. 56 and p. 57, fig. 2a).
  13. ^ See also (Petitt & McWhorter 1961, pp. 109–111).
  14. ^ See (Valley & Wallman 1948, p. 724) and (Petitt & McWhorter 1961, p. 122).
  15. ^ By the Paley-Wiener criterion: see for example (Valley & Wallman 1948, p. 721 and p. 724). Also Petitt & McWhorter (1961, p. 122) briefly recall this fact.
  16. ^ See (Valley & Wallman 1948, p. 724), (Petitt & McWhorter 1961, p. 111, including footnote 1, and p.) and (Orwiler 1969, p. 30).
  17. ^ a b Compare with (Orwiler 1969, p. 30).
  18. ^ Called also "single-pole filter". See (Cherry & Hooper 1968, p. 639).
  19. ^ Compare with (Valley & Wallman 1948, p. 72, formula (2)), (Cherry & Hooper 1968, p. 639, formula (13.3)) or (Orwiler 1969, p. 22 and p. 30).
  20. ^ See the section "Relation of time constant to bandwidth" section of the "Time constant" entry for a formal proof of this relation.
  21. ^ See (Ogata 2010, p. 171).
  22. ^ "S" stands for "source", to be understood as current or voltage source.
  23. ^ This beautiful one-page paper does not contain any calculation. Henry Wallman simply sets up a table he calls "dictionary", paralleling concepts from electronics engineering and probability theory: the key of the process is the use of Laplace transform. Then he notes, following the correspondence of concepts established by the "dictionary", that the step response of a cascade of blocks corresponds to the central limit theorem and states that: "This has important practical consequences, among them the fact that if a network is free of overshoot its time-of-response inevitably increases rapidly upon cascading, namely as the square-root of the number of cascaded network"(Wallman 1950, p. 91).
  24. ^ See also (Cherry & Hooper 1968, p. 656) and (Orwiler 1969, pp. 27–28).
  25. ^ Cited by (Cherry & Hooper 1968, p. 656).
  26. ^ See (Petitt & McWhorter 1961, p. 109).

References

Read other articles:

ديناصورDinosaurمعلومات عامةالتصنيف فيلم ثلاثي الأبعاد — فيلم رسوم متحركة الصنف الفني فيلم موسيقي — فيلم فنتازيا — فيلم مغامرة — فيلم رسوم متحركة بالكمبيوتر الموضوع ديناصور تاريخ الصدور 19 مايو 2000[1] (الولايات المتحدة)15 يونيو 2000[2] (ألمانيا)17 نوفمبر 2000[3][4] (السوي

Wangsa Oranye-NassauLambang Kerajaan BelandaNegaraBelanda, Britania Raya, Skotlandia, Irlandia, Luksemburg, Jerman, Oranye, NassauWangsa asalWangsa NassauGelar-gelar Raja Belanda Raja Inggris, Skotlandia dan Irlandia Kepangeranan Berdaulat Belanda Adipati Agung Luksemburg Adipati Limburg Pangeran Orange Fürst Oranye-Nassau Fürst Nassau-Oranye-Fulda Pangeran Nassau-Dietz Pangeran Nassau-Dillenburg Stadhouder di Belanda PendiriWillem sang PendiamPenguasa kiniWillem-Alexander dari BelandaDidir...

Турбаза «Вовча»чеськ. Vlčí bouda Оригінальний постер до фільмуЖанр драма, пригодницький, жахи, фантастика, трилерРежисер Віра ХитіловаСценарист Віра ХитіловаДаніела ФішероваУ головних ролях Мирослав Махачек Томаш Палати Степанка ЧервенковаОператор Яромир ШофрКомпозито...

Public university in Bergen, Norway University of BergenUniversitetet i BergenLatin: Universitas BergensisTypePublic UniversityEstablished1946 (1825)RectorMargareth HagenAdministrative staff4,215 (2021)Students19,641 (2021)LocationBergen, NorwayAffiliationsARQUS AllianceEUAWUN Coimbra Group Utrecht NetworkWebsitewww.uib.no The University of Bergen (Norwegian: Universitetet i Bergen) is a public research university located in Bergen, Norway. As of 2021, the university has over 4,000 employees ...

テルアビブ飛行隊Tel Aviv Squadronテルアビブ飛行隊のオースター J/1活動期間1947–1949国籍 イスラエル軍種 イスラエル航空宇宙軍任務連絡・軽攻撃基地スデ・ドブ基地渾名パンサー・スコードロン主な戦歴第一次中東戦争表話編歴 イスラエル空軍 テルアビブ飛行隊(Tel Aviv Squadron) は、イスラエル空軍創設以前に、ハガナーの航空部隊Sherut Avirに最初に編成された飛

Christian Jürgens Christian Jürgens (* 12. Februar 1951 in Hamburg) ist ein deutscher Chirurg und Hochschullehrer in Hamburg und Lübeck. Inhaltsverzeichnis 1 Leben 1.1 Werke 1.2 Herausgeber 2 Literatur 3 Einzelnachweise Leben Von 1962 bis 1971 besuchte Jürgens die Gelehrtenschule des Johanneums. Nach dem Abitur studierte er ab 1971 Humanmedizin an der Universität Hamburg. Nach der Medizinalassistentenzeit war er als Stabsarzt bei der Bundeswehr. An der Hamburger Universität erfolgte mit...

1998 film Aasai ThambiVCD coverDirected bySenthilnathanWritten byLiyakat Ali Khan (dialogues)Produced byS. ManiStarringArun PandianAbbasAnju AravindCinematographyD. ShankarEdited byG. JayachandranMusic byAdithyanProductioncompanyCheranaadu Movie CreationsRelease date 18 September 1998 (1998-09-18) CountryIndiaLanguageTamil Aasai Thambi (transl. Dearest Younger Brother) is a 1998 Indian Tamil-language crime drama film directed by Senthilnathan. The film stars Arun Pandian,...

Writing conventions for the Danish language This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Danish orthography – news · newspapers · books · scholar · JSTOR (October 2014) (Learn how and when to remove this template message) Danish orthography is the system and norms used for writing the Danish language, inc...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Undisputed Queen – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this template message) 1999 studio album by Peggy Scott-AdamsUndisputed QueenStudio album by Peggy Scott-AdamsReleasedJune 15, 1999[1]Recorde...

For other people, see Jamshid (name). For the village in Iran, see Jamshid, Iran. Iranian king Persian painting, depicting Jamshid being sawn in half before Zahhak You may need rendering support to display the uncommon Unicode characters in this article correctly. Jamshid ([dʒæmˈʃiːd]) (Persian: جمشید, Jamshēd; Middle- and New Persian: جم, Jam) also known as Yima (Avestan:

Lotian boat racing festival Boun Suang Huea(ບຸນຊ່ວງເຮືອ)Observed byLaosTypeBuddhistDateOctober 15Related toVap Full Moon Poya (in Sri Lanka) Wan Ok Phansa (in Thailand) Thadingyut (in Myanmar) Lhabab Duchen (in Tibet and Bhutan) The boat racing festival called Boun Suang Heua[1] or Boun Xuang Heua (Lao: ບຸນຊ່ວງເຮືອ [bùn sūa̯ŋ.hɯ́a̯]) or Loy Krathong (Lao: ລອຍກະໂທງ [lóːj kā.tʰóːŋ]) is ce...

Gary MokotoffPersonalBornGary Mokotoff(1937-04-26)April 26, 1937New York City, New York USReligionJudaismSpouseRuth MokotoffChildren3Parent(s)Sylvia MokotoffJack MokotoffOccupationJewish GenealogistComputer Scientist Gary Mokotoff (born April 26, 1937) is an author, lecturer, and Jewish genealogy researcher.[1][2][3] Mokotoff is the publisher of AVOTAYNU, the International Review of Jewish Genealogy,[4] and is the former president of the International Associati...

2015 film directed by Rick Alverson EntertainmentFilm poster for EntertainmentDirected byRick AlversonWritten by Rick Alverson Gregg Turkington Tim Heidecker Produced by Ryan Zacarias Ryan Lough George Rush Brooke Bernard Rick Alverson Patrick Hibler Alex Lipschultz[1] Starring Gregg Turkington John C. Reilly Tye Sheridan Amy Seimetz Lotte Verbeek Michael Cera CinematographyLorenzo Hagerman[1]Edited by Michael Taylor Rick Alverson[1] Music byRobert Donne[1]Prod...

2008 Australian filmRestraintRestraint posterDirected byDavid DenneenWritten byDave WarnerProduced by Dan Halsted Mark Lazarus Anna Fawcett Todd Fellman StarringStephen MoyerTravis FimmelTeresa PalmerCinematographySimon DugganEdited byToby Denneen Rodrigo BalartMusic byElliott WheelerProductioncompanies Filmgraphics Entertainment Film Finance Distributed byAccent Film EntertainmentRelease dates 19 August 2008 (2008-08-19) (United States) 2 April 2009 (2009-04...

Disease caused by the bacteria Salmonella Typhi Not to be confused with Typhus. Medical conditionTyphoid feverOther namesEnteric fever, slow feverCausative agent: Salmonella enterica serological variant Typhi (shown under a microscope with flagellar stain)SpecialtyInfectious diseases SymptomsFever that starts low and increases daily, possibly reaching as high as 104.9 °F (40.5 °C) Headache, weakness and fatigue, muscle aches, sweating, dry cough, loss of appetite, weight loss, stomach ...

Duta Besar Indonesia untuk MozambikMerangkap MalawiLambang Kementerian Luar Negeri Republik IndonesiaPetahanaHerry Sudrajatsejak 14 September 2020KantorMaputo, MozambikDitunjuk olehPresiden IndonesiaPejabat perdanaHarbangun NapituluDibentuk2010[1]Situs webkemlu.go.id/maputo/id Berikut adalah daftar diplomat Indonesia yang pernah menjabat Duta Besar Republik Indonesia untuk Mozambik: No. Foto Nama Mulai menjabat Selesai menjabat Merangkap Diangkat oleh Ref. 1 Harbangun Napitulu 21...

  خدمة المارشالات الأمريكية خدمة المارشالات الأمريكية‌ خدمة المارشالات الأمريكية‌ الاختصار (بالإنجليزية: USMS)‏  البلد الولايات المتحدة  المقر الرئيسي مقاطعة أرلنغتون، فيرجينيا  تاريخ التأسيس 1789  المنظمة الأم وزارة العدل الأمريكية  عدد الموظفين 5116   الم...

Radio station in Lethbridge, Alberta CHLB-FMLethbridge, AlbertaBroadcast areaLethbridge CountyFrequency95.5 MHz (FM)BrandingWild 95.5ProgrammingFormatCountryOwnershipOwnerJim Pattison GroupSister stationsCJBZ-FMHistoryFirst air dateAugust 28, 1959 as CHECFormer call signsCHEC (1959-1993)CKRX (1993-1996)CKRX-FM (1996-1997)Former frequencies1090 kHz (AM)Call sign meaningC H LethBridge (broadcast area)Technical informationClassC1ERP100 kWsHAAT173 meters (568 ft)Transmitter coordinates49°41...

Mayan language spoken in Mexico and Guatemala AkatekAcatecoKuti, q'anub'al'Native toGuatemalaMexicoRegionHuehuetenangoChiapasEthnicity66,000 Akateko in Guatemala (2019 census)Native speakers65,000 in Guatemala (2011 – 2019 census)[1]2,900 in Mexico (2020 census)[2]Language familyMayan Qʼanjobalan–ChujeanQʼanjobalanKanjobal–JacaltecAkatekWriting systemLatinOfficial statusRecognised minoritylanguage in Mexico GuatemalaRegulated byInstitu...