Computational anatomy (CA) is the study of shape and form in medical imaging. The study of deformable shapes in CA rely on high-dimensional diffeomorphism groups which generate orbits of the form . In CA, this orbit is in general considered a smooth Riemannian manifold
since at every point of the manifold there is an inner product inducing the norm on the tangent space
that varies smoothly from point to point in the manifold of shapes . This is generated by viewing the
group of diffeomorphisms as a Riemannian manifold with , associated to the tangent space at . This induces the norm and metric on the orbit under the action from the group of diffeomorphisms.
The diffeomorphisms group generated as Lagrangian and Eulerian flows
To ensure smooth flows of diffeomorphisms with inverse, the vector fields must be at least 1-time continuously differentiable in space[1][2] which are modelled as elements of the Hilbert space using the Sobolev embedding theorems so that each element has 3-square-integrable derivatives thusly implies embeds smoothly in 1-time continuously differentiable functions.[1][2] The diffeomorphism group are flows with vector fields absolutely integrable in Sobolev norm:
Diffeomorphism Group
The Riemannian orbit model
Shapes in Computational Anatomy (CA) are studied via the use of diffeomorphic mapping for establishing correspondences between anatomical coordinate systems. In this setting, 3-dimensional medical images are modelled as diffeomorphic transformations of some exemplar, termed the template , resulting in the observed images to be elements of the random orbit model of CA. For images these are defined as , with for charts representing sub-manifolds denoted as .
The Riemannian metric
The orbit of shapes and forms in Computational Anatomy are generated by the group action. This is made into a Riemannian orbit by introducing a metric associated to each point and associated tangent space. For this a metric is defined on the group which induces the metric on the orbit. Take as the metric for Computational anatomy at each element of the tangent space in the group of diffeomorphisms
,
with the vector fields modelled to be in a Hilbert space with the norm in the Hilbert space . We model as a reproducing kernel Hilbert space (RKHS) defined by a 1-1, differential operator. For a distribution or generalized function, the linear form determines the norm:and inner product for according to
where the integral is calculated by integration by parts for a generalized function the dual-space.
The differential operator is selected so that the Green's kernel associated to the inverse is sufficiently smooth so that the vector fields support 1-continuous derivative.
The right-invariant metric on diffeomorphisms
The metric on the group of diffeomorphisms is defined by the distance as defined on pairs of elements in the group of diffeomorphisms according to
metric-diffeomorphisms
This distance provides a right-invariant metric of diffeomorphometry,[3][4][5] invariant to reparameterization of space since for all ,
The Lie bracket in the group of diffeomorphisms
The Lie bracket gives the adjustment of the velocity term resulting from a perturbation of the motion in the setting of curved spaces. Using Hamilton's principle of least-action derives the optimizing flows as a critical point for the action integral of the integral of the kinetic energy. The Lie bracket for vector fields in Computational Anatomy was first introduced in Miller, Trouve and Younes.[6] The derivation calculates the perturbation on the vector fields
in terms of the derivative in time of the group perturbation adjusted by the correction of the Lie bracket of vector fields in this function setting involving the Jacobian matrix, unlike the matrix group case:
The action integral in terms of the vector field corresponds to integrating the kinetic energy
The shortest paths geodesic connections in the orbit are defined via Hamilton's Principle of least action requires first order variations of the solutions in the orbits of Computational Anatomy which are based on computing critical points on the metric length or energy of the path.
The original derivation of the Euler equation[7] associated to the geodesic flow of diffeomorphisms exploits the was a generalized function equation when is a distribution, or generalized function, take the first order variation of the action integral using the adjoint operator for the Lie bracket (adjoint-Lie-bracket) gives for all smooth ,
Using the bracket and gives
EL-General
meaning for all smooth
Equation (Euler-general) is the Euler-equation when diffeomorphic shape momentum is a generalized function.
[8]
This equation has been called EPDiff, Euler–Poincare equation for diffeomorphisms and has been studied in the context of fluid mechanics for incompressible fluids with metric.
[9][10]
Riemannian exponential for positioning
In the random orbit model of Computational anatomy, the entire flow is reduced to the initial condition which forms the coordinates encoding the diffeomorphism, as well as providing the means of positioning information in the orbit. This was first terms a geodesic positioning system in Miller, Trouve, and Younes.[4] From the initial condition then geodesic positioning with respect to the Riemannian metric of Computational anatomy solves for the flow of the Euler–Lagrange equation. Solving the geodesic from the initial condition is termed the Riemannian-exponential, a mapping at identity to the group.
The Riemannian exponential satisfies for initial condition , vector field dynamics ,
for classical equation on the diffeomorphic shape momentum as a smooth vector with the Euler equation exists in the classical sense as first derived for the density:[11]
for generalized equation, , then
It is
extended to the entire group,
.
The variation problem for matching or registering coordinate system information in computational anatomy
Matching information across coordinate systems is central to computational anatomy. Adding a matching term to the action integral of Equation (Hamilton's action integral)
which represents the target endpoint
The endpoint term adds a boundary condition for the Euler–Lagrange equation (EL-General)
which gives the Euler equation with boundary term. Taking the variation gives
Necessary geodesic condition:
Proof:[11] The Proof via variation calculus uses the perturbations from above and classic calculus of variation arguments.
Proof via calculus of variations with endpoint energy
Euler–Lagrange geodesic endpoint conditions for image matching
The earliest large deformation diffeomorphic metric mapping (LDDMM) algorithms solved matching problems associated to images and registered landmarks. are in a vector spaces. The image matching geodesic equation satisfies the classical dynamical equation with endpoint condition. The necessary conditions for the geodesic for image matching takes the form of the classic Equation (EL-Classic) of Euler–Lagrange with boundary condition:
Necessary geodesic condition:
Euler–Lagrange geodesic endpoint conditions for landmark matching
The registered landmark matching problem satisfies the dynamical equation for generalized functions with endpoint condition:
^Miller, Michael I.; Trouvé, Alain; Younes, Laurent (2015-01-01). "Hamiltonian Systems and Optimal Control in Computational Anatomy: 100 Years Since D'Arcy Thompson". Annual Review of Biomedical Engineering. 17 (1): 447–509. doi:10.1146/annurev-bioeng-071114-040601. PMID26643025.
^ abcM.I. Miller, A. Trouve, L Younes,
On the Metrics and Euler–Lagrange equations of Computational Anatomy,
Annu. Rev. Biomed. Eng. 2002. 4:375–405
doi:10.1146/annurev.bioeng.4.092101.125733
Copyright °c 2002 by Annual Reviews.
This is a list of Asian countries and dependencies by population in Asia, total projected population from the United Nations[1] and the latest official figure. Map Asia population by country[1] China (29.9%) India (29.9%) Indonesia (5.7%) Pakistan (5.0%) Bangladesh (3.6%) Japan (2.6%) Philippines (2.5%) Asian countries by population, 2023[1] Table Country / dependency %Asia Asiapopulation �...
GonesseBalai kota Koordinat: 48°59′15″N 2°26′58″E / 48.9875°N 2.4494°E / 48.9875; 2.4494NegaraPrancisArondisemenSarcellesKantonGonesse (ibukota)Antarkomunetidak ada pada 2008Kode INSEE/pos95280 / Lambang Gonesse Gonesse merupakan sebuah komune di pinggiran timur laut Paris, Prancis. Terletak 16.5 km (10.2 mil) dari pusat kota Paris. Terletak di utara Bandar Udara Le Bourget dan barat daya Bandar Udara Internasional Charles de Gaulle. Sejarah Raja...
Abenomask adalah program pembagian kepada 50 juta rumah tangga di Jepang di mana masing-masing menerima dua masker dalam rangka menghadapi COVID-19.[1] Kebijakan ini dikritik oleh lawan politik Perdana Menteri Abe Shinzo dengan mengatakan menghambur-hamburkan uang yang berasal dari pajak rakyat. Juga penanganan wabah Coronavirus yang terlambat sehingga terlanjur menyebar ke seluruh negeri. Pada tahap awal, pembagian masker menyasar ke ibu hamil. Pada 19 April, Kementerian Kesehatan m...
.30 Remington .30 Remington (tengah) dengan .223 Remington (kiri) dan .308 Winchester (kanan). Tipe Senapan Negara asal Amerika Serikat Sejarah produksi Perancang Remington Arms Dirancang 1906 Pembuat Remington Arms Diproduksi 1906-1980an Spesifikasi Jenis selongsong Rimless Diameter proyektil .308 in (7.8 mm) Diameter rim .421 in (10.7 mm) Ketebalan rim .045 in (1.1 mm) Panjang selongsong 2.06 in (52 mm) Panjang keseluruhan 2.525 in (64.1 mm) Pe...
Design principle preferring simplicity K.I.S.S. redirects here. For other uses, see Kiss (disambiguation). A simple sign of the KISS principle (excluding the last word) KISS, an acronym for Keep it simple, stupid!, is a design principle first noted by the U.S. Navy in 1960.[1][2] First seen partly in American English by at least 1938, the KISS principle states that most systems work best if they are kept simple rather than made complicated; therefore, simplicity should be a ke...
Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...
Ne doit pas être confondu avec Verizon. Vierzon Blason Administration Pays France Région Centre-Val de Loire Département Cher(sous-préfecture) Arrondissement Vierzon(chef-lieu) Intercommunalité Communauté de communes Vierzon-Sologne-Berry et Villages de la Forêt(siège) Maire Mandat Corinne Ollivier (PCF) 2022-2026 Code postal 18100 Code commune 18279 Démographie Gentilé Vierzonnais Populationmunicipale 25 348 hab. (2021 ) Densité 340 hab./km2 Population agglomérati...
Egyptian pharaoh Necho IINekauA small kneeling bronze statuette, likely Necho II, now residing in the Brooklyn MuseumPharaohReign610–595 BCPredecessorPsamtik ISuccessorPsamtik IIRoyal titulary Horus name Maaib Nebty name Maakheru Golden Horus Merynetjeru Prenomen (Praenomen) Wahemibre Nomen Necho ConsortKhedebneithirbinet IDied595 BCDynasty26th dynasty Necho II[1] (sometimes Nekau,[2] Neku,[3] Nechoh,[4] or Nikuu;[5] Greek: Νεκ�...
Stasiun Mejiroyamashita目白山下駅Stasiun MejiroyamashitaLokasiPrefekturKanagawa(Lihat stasiun lainnya di Kanagawa)KotaFujisawaAlamatKatase 3-2776Kode pos251 - 0032Alamat dalam bahasa Jepang神奈川県鎌倉市片瀬3-2776SejarahDibuka1971Layanan kereta apiOperatorPerusahaan Monorel ShōnanJalurJalur Enoshima Terdapat sebuah pemberhentian bus di dekat stasiun ini Stasiun Mejiroyamashita (目白山下駅code: ja is deprecated , Mejiroyamashita-eki) adalah stasiun monorel di Ja...
Questa voce sull'argomento microbiologia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Come leggere il tassoboxVirus del mosaico del tabacco Classificazione scientifica Dominio Riboviria Regno Orthornavirae Phylum Kitrinoviricota Classe Alsuviricetes Ordine Martellivirales Famiglia Virgaviridae Genere Tobamovirus Specie Tobacco Mosaic Virus Modello tridimensionale del virus del mosaico del tabacco ch...
Sadad (ar) صدد Administration Pays Syrie Muhafazah (محافظة) Homs Démographie Population 3 000 hab. Géographie Coordonnées 34° 18′ 48″ nord, 36° 55′ 27″ est Localisation Géolocalisation sur la carte : Syrie Sadad modifier Sadad (en arabe: صدد) est un village de Syrie, à 60 kilomètres au sud de Homs et à 101 kilomètres au nord-est de Damas. Sadad est probablement le village mentionné dans l'Ancien Testa...
此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: In flight – news · newspapers · books · scholar · JSTOR (January 2008) (Learn how and when to remove this message) In baseball, the rules state that a batted ball is considered in flight when it has not yet touched any object other than a fielder or his equipme...
Top level New Zealand netball league ANZ PremiershipCurrent season, competition or edition: 2023 ANZ Premiership seasonFormerlyANZ ChampionshipSportNetballFounded2016First season2017AdministratorNetball New ZealandNo. of teams6CountryNew ZealandMost recentchampion(s)Northern Mystics (2nd title) (2023)Most titlesCentral Pulse (3 titles)TV partner(s)Sky Sport (New Zealand)Sponsor(s)ANZLevel on pyramid1RelatedcompetitionsSuper ClubNational Netball LeagueOfficial websiteanzpremiership.co.nz The A...
Music conservatory in Vietnam Music Conservatory of Ho Chi Minh CityFormer nameTrường Quốc gia Âm nhạcTrường Quốc gia Âm nhạc và Kịch nghệEstablishedApril 12, 1956; 68 years ago (1956-04-12)PresidentHoàng Ngọc Long[1]Vice-presidentNguyễn Mỹ HạnhHuỳnh Thị Thu Hiền[1]Address112 Nguyen Du Street, Ben Thanh Ward, District 1, Ho Chi Minh City, Vietnam10°46′27.1″N 106°41′42.3″E / 10.774194°N 106.695083�...
Canaules-et-Argentières La mairie Blason Administration Pays France Région Occitanie Département Gard Arrondissement Le Vigan Intercommunalité Communauté de communes du Piémont Cévenol Maire Mandat Robert Cahu 2020-2026 Code postal 30350 Code commune 30065 Démographie Populationmunicipale 472 hab. (2021 ) Densité 47 hab./km2 Géographie Coordonnées 43° 58′ 54″ nord, 4° 03′ 11″ est Altitude Min. 88 mMax. 168 m Superficie 10...
Criticism directed at the World Trade Organization Protestors clash with Hong Kong police in the Wan Chai waterfront area during the WTO Ministerial Conference of 2005. Since its creation in 1995, the World Trade Organization (WTO) has worked to maintain and develop international trade. As one of the largest international economic organizations (alongside the International Monetary Fund (IMF) and the World Bank), it has strong influence and control over trading rules and agreements, and thus ...