Rationalisation (mathematics)

In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.

If the denominator is a monomial in some radical, say with k < n, rationalisation consists of multiplying the numerator and the denominator by and replacing by x (this is allowed, as, by definition, a nth root of x is a number that has x as its nth power). If kn, one writes k = qn + r with 0 ≤ r < n (Euclidean division), and then one proceeds as above by multiplying by

If the denominator is linear in some square root, say rationalisation consists of multiplying the numerator and the denominator by and expanding the product in the denominator.

This technique may be extended to any algebraic denominator, by multiplying the numerator and the denominator by all algebraic conjugates of the denominator, and expanding the new denominator into the norm of the old denominator. However, except in special cases, the resulting fractions may have huge numerators and denominators, and, therefore, the technique is generally used only in the above elementary cases.

Rationalisation of a monomial square root and cube root

For the fundamental technique, the numerator and denominator must be multiplied by the same factor.

Example 1:

To rationalise this kind of expression, bring in the factor :

The square root disappears from the denominator, because by definition of a square root:

which is the result of the rationalisation.

Example 2:

To rationalise this radical, bring in the factor :

The cube root disappears from the denominator, because it is cubed; so

which is the result of the rationalisation.

Dealing with more square roots

For a denominator that is:

Rationalisation can be achieved by multiplying by the conjugate:

and applying the difference of two squares identity, which here will yield −1. To get this result, the entire fraction should be multiplied by

This technique works much more generally. It can easily be adapted to remove one square root at a time, i.e. to rationalise

by multiplication by

Example:

The fraction must be multiplied by a quotient containing .

Now, we can proceed to remove the square roots in the denominator:

Example 2:

This process also works with complex numbers with

The fraction must be multiplied by a quotient containing .

Generalizations

Rationalisation can be extended to all algebraic numbers and algebraic functions (as an application of norm forms). For example, to rationalise a cube root, two linear factors involving cube roots of unity should be used, or equivalently a quadratic factor.

References

This material is carried in classic algebra texts. For example:

  • George Chrystal, Introduction to Algebra: For the Use of Secondary Schools and Technical Colleges is a nineteenth-century text, first edition 1889, in print (ISBN 1402159072); a trinomial example with square roots is on p. 256, while a general theory of rationalising factors for surds is on pp. 189–199.

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Reinier Bertus Beeuwkes – berita · surat kabar · buku · cendekiawan · JSTOR Reinier Bertus Beeuwkes Rekam medali Mewakili  Belanda sepak bola pria London 1908 Kompetisi Tim Reinier Bertus Beeuwkes (...

 

PemberitahuanTemplat ini mendeteksi bahwa artikel bahasa ini masih belum dinilai kualitasnya oleh ProyekWiki Bahasa dan ProyekWiki terkait dengan subjek. Terjadi [[false positive]]? Silakan laporkan kesalahan ini. 07.11, Sabtu, 30 Maret, 2024 (UTC) • hapus singgahan Sebanyak 1.305 artikel belum dinilai Artikel ini belum dinilai oleh ProyekWiki Bahasa Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)  Kolom pencarian ini hanya didukung oleh beberapa antarmuka Hala...

 

عدد المقالات الموجودة حاليا في ويكيبيديا العربية والمرتبطة بالإمارات العربية المتحدة هو : 4٬385 مقالة. محتويات البوابة: مقالة مختارة | مدينة مختارة | شخصية مختارة | صور مختارة | هل تعلم | إمارة مختارة | مشروع ويكي الإمارات العربية المتحدة | قوالب عن الإمارات العربية المتحدة |...

Bay in Turkey Gulf of Thermessos, painting by Luigi Mayer. The Gulf of Fethiye (Turkish: Fethiye Körfezi) is a branch of the Mediterranean Sea in southwestern Turkey. The cities Fethiye and Göcek of Muğla Province are situated around the gulf. It is bounded on the west by Cape Kurdoğlu (Turkish: Kurtoğlu Burnu) and on the east by Cape İblis/Cape Angistro (Turkish: İblis Burnu). It is a popular area for tourism and yachting. Until 1923, it was known as the Gulf of Meğri/Makri/Macre/Mek...

 

For the politician, see Matt Foley (politician). Fictional character Matt FoleyFoley (Chris Farley, left) giving a speech to two teens (David Spade and Christina Applegate)First appearanceMay 8, 1993Last appearanceOctober 25, 1997 (Farley)February 11, 2015 (McCarthy)Created byBob OdenkirkPortrayed byChris Farley (1993–1997)Melissa McCarthy (SNL 40th Anniversary Special)In-universe informationOccupation • Motivational speaker • Prison inmate at Joliet Correction...

 

«Palos» redirige aquí. Para otras acepciones, véase Palo (desambiguación). Para otros usos de este término, véase Palos de la Frontera (desambiguación). Palos de la Frontera ciudad y municipio de EspañaBanderaEscudo Vista panorámica de la entrada de Palos de la Frontera donde se observa la Fontanilla, la Iglesia de San Jorge Mártir y en el cabezo los restos del antiguo castillo de Palos. Palos de la FronteraUbicación de Palos de la Frontera en España Palos de la FronteraUbicació...

Allmannsweilercomune Allmannsweiler – Veduta LocalizzazioneStato Germania Land Baden-Württemberg DistrettoTubinga CircondarioBiberach TerritorioCoordinate48°01′42″N 9°35′37″E / 48.028333°N 9.593611°E48.028333; 9.593611 (Allmannsweiler)Coordinate: 48°01′42″N 9°35′37″E / 48.028333°N 9.593611°E48.028333; 9.593611 (Allmannsweiler) Altitudine625 m s.l.m. Superficie4,10 km² Abitanti335[1] (31-12-2022) D...

 

Questa voce sull'argomento edizioni di competizioni calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Coppa Italia Primavera 2005-2006Tim Cup Primavera 2005-2006 Competizione Coppa Italia Primavera Sport Calcio Edizione 34ª Organizzatore Lega Serie A Luogo  Italia Risultati Vincitore  Inter(5° titolo) Secondo  Milan Cronologia della competizione 2004-2005 2006-2007 Manuale La Coppa Italia Primavera 2005-2006 è la t...

 

Pour les articles homonymes, voir Alma-Tadema. Laurence Alma-TademaBiographieNaissance 1865Ville de Bruxelles ou Région de Bruxelles-CapitaleDécès 1940LondresSépulture WittershamNom de naissance Laurense TademaNationalités britanniquebelgeActivités Dramaturge, poétesse, autrice de littérature pour la jeunesse, écrivaine, éditricePère Lawrence Alma-TademaMère [Marie] Pauline Gressin (d)Fratrie Anna Alma-TademaAutres informationsDistinction Commandeur de l'ordre de l'Empire britann...

Dutch footballer (born 1994) Hans Hateboer Hateboer with Atalanta in 2017Personal informationDate of birth (1994-01-09) 9 January 1994 (age 30)Place of birth Beerta, NetherlandsHeight 1.85 m (6 ft 1 in)[1]Position(s) Right-backTeam informationCurrent team AtalantaNumber 33Youth career THOS Veendam GroningenSenior career*Years Team Apps (Gls)2013–2017 Groningen 87 (1)2017– Atalanta 187 (8)International career‡2014 Netherlands U20 3 (0)2014–2016 Netherlands U...

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Universitas Purdue – berita · surat kabar · buku · cendekiawan · JSTOR Universitas PurdueJenisPublik Unggulan Tanah-hibah Universitas laut-hibah Langit-hibahDidirikan6 Mei 1869Dana abadiAS$1,91 miliar (2012) ...

 

Cet article est une ébauche concernant la géographie et la montagne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. OrographieCarte orographique de l'Est sibérien réalisée par Pierre Kropotkine en 1875.Partie de Sciences de la TerreObjet Surface terrestre (en)modifier - modifier le code - modifier Wikidata L'orographie (du grec ancien ὄρος / óros, « montagne », et γράφω / g...

1861 speech by Alexander H. Stephens Cornerstone SpeechAlexander H. Stephens, the deliverer of the speechDateMarch 21, 1861; 163 years ago (1861-03-21)LocationThe Athenaeum, Savannah, GeorgiaParticipantsAlexander H. Stephens The Cornerstone Speech, also known as the Cornerstone Address, was an oration given by Alexander H. Stephens, acting Vice President of the Confederate States of America, at the Athenaeum in Savannah, Georgia, on March 21, 1861.[1] The improvised ...

 

Fairy tales from Ukraine Early Ukrainian fairy tale illustration from 1894 A Ukrainian fairy tale, Kazka (Ukrainian: казка), is a fairy tale from Ukraine. The plural of казка is казки (kazky). In times of oral tradition, they were used to transmit knowledge and history.[1] Description Ukrainian folk literature is vast.[2][3] Many Ukrainian fairy tales feature forests and grassy plains, with people working as farmers or hunters.[1] Many Ukrainian ...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يوليو 2019) منتخب الدنمارك لكرة القدم الشاطئية رمز الفيفا DEN  مشاركات تعديل مصدري - تعديل...

التهاب الحويضة والكلية صورة مجهرية لإلْتِهابُ الحُوَيضَةِ والكُلْيَةِ الوَرَمِيُّ الحُبَيبِيُّ الأَصْفَر يتبين من CD68 المناعي.صورة مجهرية لإلْتِهابُ الحُوَيضَةِ والكُلْيَةِ الوَرَمِيُّ الحُبَيبِيُّ الأَصْفَر يتبين من CD68 المناعي. معلومات عامة الاختصاص طب الجهاز البو�...

 

كأس ألبانيا 2007–08 تفاصيل الموسم كأس ألبانيا  النسخة 56  البلد ألبانيا  التاريخ بداية:أغسطس 2007  نهاية:7 مايو 2008  المنظم اتحاد ألبانيا لكرة القدم  البطل نادي فلازنيا إشقودرة  كأس ألبانيا 2006–07  كأس ألبانيا 2008–09  تعديل مصدري - تعديل   كأس ألبانيا 2007–08 (ب�...

 

Pemukim Jepang di Kepulauan MarshallPresiden Amata KabuaPresiden Kessai NoteJumlah populasi70 (2007)[1][fn 1]Daerah dengan populasi signifikanJaluit, KwajaleinBahasaMarshall, Inggris, JepangAgamaProtestan;[2] Shinto dan BuddhaKelompok etnik terkaitMicronesians, Jepang, Okinawa Pemukiman Jepang di Kepulauan Marshall timbul dari perdagangan Jepang di wilayah Pasifik. Para penjelajah Jepang pertama datang ke Kepulauan Marshall pada akhir abad ke-19, meskipun pemukiman per...

Questa voce sull'argomento automobilismo è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. L'Alfasud TI Gruppo 1 di Alfa Romeo nel 1974 al Rally di Sanremo Il Gruppo 1 era una classificazione della FIA per le auto da turismo, da corsa e da rally. Nel 1982 è stato sostituito dal Gruppo N. Indice 1 Prima definizione 2 Requisiti di produzione 2.1 Gruppi 3 Note Prima definizione La Federazione Internazional...

 

ДеревняКивсерт-Марги 55°55′26″ с. ш. 47°10′09″ в. д.HGЯO Страна  Россия Субъект Федерации Чувашия Муниципальный район Чебоксарский Сельское поселение Ишакское История и география Первое упоминание 1795 Прежние названия Кивесерт, Кивсерткасы, Кивсерт-Марги, Кивсер...