Ramsey–Lewis method

The Ramsey–Lewis method is a method for defining terms found in theoretical frameworks (such as in scientific theories), credited to mathematician Frank P. Ramsey[1] and philosopher David K. Lewis.[2] By using this method, a set of theoretical terms appearing in a theory can be defined implicitly by the assertions of the theory itself.

Overview

A scientific theory which attempts to describe "electrons" is inherently abstract, as no one has ever observed an electron directly. Thus, the origin and content of the concept of "electron" is questionable. What does the word exactly signify? Ramsey and Lewis proposed that the meaning of the term "electron" is implicitly generated by the scientific theory that describes it, via all its assertions about electrons. Electrons are those things about which all the statements of the theory are true.

However, some of those statements in a theory refer to other unobserved entities and properties such as "charge" or "spin". For instance, "Electrons attract protons" and "Electrons have negative charge" employ the terms "protons" and "negative charge" (with the latter also implicitly using the concept of "charge"). These properties are formalized, statements (such as conditionals) are formed using them, and those statements taken together are the definition of the term.

Consider a sentence such as "There's an electron in the sink." This means something along the lines of: "There exist some properties P1P2, ..., Pn ( one for every theoretical property involved in the scientific theory, with 'electronhood' (which roughly corresponds to the essence of an electron included as P1) such that... (a statement in the scientific theory, but with P1, ..., Pn substituted for the specific terms such as 'charge', 'is an electron', etc. employed by the theory), and there is something in the sink that has P1."

The process of converting the narrative form of a scientific theory into second-order logic is commonly called "Ramsification" (sometimes also spelled "Ramseyfication").

Example: Suppose there are only three principles in our scientific theory about electrons (those principles can be seen to be statements involving the properties):

A1. Electrons (things that have P1) have charge (P2).

A2. Things with charge (P2) tickle you.

A3. Electrons (things that have P1) cause lightning.

Furthermore, we include the property of "electronhood", as outlined above, to be designated by P1, and the property of "charge" to be designated by P2.

Then the meaning of a sentence such as "I have an electron in my pocket" is Ramsified into:

"There are properties P1 and P2 such that (things with P1 also have P2, and things with P2 tickle you, and things with P1 cause lightning, and there is a thing with P1 in my pocket)." (Toraldo di Francia 1981, p. 74, who cites Ramsey 2013.)

Notes

Sources

An outline of the Ramsey–Lewis method

Read other articles:

Halaman ini berisi artikel tentang aktris film India. Untuk penulis India, lihat Nayantara Sahgal. Untuk tumbuhan, lihat Vinca rosea. NayantaraNayanthara at SIIMA 2013LahirDiana Mariam Kurian18 November 1984 (umur 39)[1][2][3]Bengaluru, Karnataka, India[4][5]Tempat tinggalChennai, Tamil Nadu, IndiaKebangsaanIndiaPekerjaanAktris, modelTahun aktif2003-sekarangKota asalThiruvalla, Kerala, IndiaPenghargaanKalaimamani[6] Nayanthara(lah...

 

American football player (1938–2024) American football player Roger DavisNo. 60, 67Position:GuardOffensive tacklePersonal informationBorn:(1938-06-23)June 23, 1938Cleveland, Ohio, U.S.Died:March 6, 2024(2024-03-06) (aged 85)Career informationCollege:SyracuseNFL draft:1960 / Round: 1 / Pick: 7AFL draft:1960 / Round: 2Pick: First Selections(by the Denver Broncos)Career history Chicago Bears (1960–1963) Los Angeles Rams (1964) New York Giants (1965–1966) ...

 

كيس من الحبوب الوردية. لاحظ كتابة العلامات التعريفية باللغة الإسبانية، والحبة مميزة باللون البرتقالي-الوردي. وقد تم قمع مثل هذه الصور في وسائل الإعلام الرسمية.[1] كارثة الحبوب السامة في العراق 1971، هي حادثة تسمم جماعي بدأت في أواخر عام 1971 بسبب مادة ميثيل الزئبق. حيث أن ال...

Madras CafePoster teatrikalSutradaraShoojit SircarProduserJohn Abraham[1]Viacom 18 Motion PicturesRonnie Lahiri[2][3][4]Ditulis olehSomnath DeyShubendu BhattacharyaJuhi Chaturvedi (dialog)PemeranJohn AbrahamNargis FakhriRashi KhannaSiddharth BasuPrakash BelawadiPenata musikShantanu MoitraSinematograferKamaljeet NegiPenyuntingChandrashekhar PrajapatiPerusahaanproduksiJA EntertainmentRising Sun FilmsDistributorViacom 18 Motion PicturesTanggal rilis 23 Agust...

 

The Cosmological Axis of Yogyakarta and its Historic LandmarksSitus Warisan Dunia UNESCODari kiri ke kanan: Gunung Merapi, Tugu Yogyakarta, Keraton Ngayogyakarta Hadiningrat, Panggung Krapyak, dan Pantai Parangtritis.KriteriaCultural: ii, iiiNomor identifikasi1671Pengukuhan2023 (Sesi ke-45) Garis Imajiner Yogyakarta atau yang sering disebut juga sebagai Sumbu Filosofis Yogyakarta adalah sebuah garis tegak imajiner (khayal) di Kesultanan Ngayogyakarta Hadiningrat. Garis ini memanjang dari utar...

 

العلاقات الإيرانية الكوبية إيران كوبا   إيران   كوبا تعديل مصدري - تعديل   العلاقات الإيرانية الكوبية هي العلاقات الثنائية التي تجمع بين إيران وكوبا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة إيران كوبا ال...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2021) الانتخابات العامة في نيكاراغوا 2021 نيكاراغوا   → 7 نوفمبر 2021  جرت الانتخابات العامة في نيكاراغوا في 7 نوفمبر 2021 لانتخاب الرئيس والجمعية الوطنية وأعضا...

 

Badminton championships Women's singles at the BWF World ChampionshipsVenueEmirates ArenaLocationGlasgow, ScotlandDates21–27 AugustMedalists  Nozomi Okuhara   Japan P. V. Sindhu   India Chen Yufei   China Saina Nehwal   India← 2015 Jakarta2018 Nanjing → Events at the 2017 BWF World ChampionshipsSinglesmenwomenDoublesmenwomenmixedvte The women's singles tournament of the 2017 BWF World Championships (World...

 

American exotic dancer (1927–2005) Honey HarlowHoney Harlow as Rose in Dance Hall RacketBornHarriett E. Jolliff(1927-08-15)August 15, 1927Manila, Arkansas, U.S.DiedSeptember 12, 2005(2005-09-12) (aged 78)Honolulu, Hawaii, U.S.Occupation(s)Stripper, showgirlSpouses Lenny Bruce ​ ​(m. 1951; div. 1957)​ Jeffrey Friedman ​(m. 1984)​ Children1 Honey Bruce Friedman (born Harriett Jolliff; August 15, 1927 – Se...

Pour les articles homonymes, voir Derniers sacrements. Ne doit pas être confondu avec Viatique. L'extrême-onction, Pietro Antonio Novelli, 1779. L'onction des malades, appelée chez les catholiques « extrême-onction » avant le concile Vatican II, et sacrement des saintes huiles chez les orthodoxes, est un sacrement des Églises catholique romaine, orthodoxes de tout genre et anglicane par lequel celui qui souffre est confié à la compassion du Christ (parfois dit Christ méde...

 

イスラームにおける結婚(イスラームにおけるけっこん)とは、二者の間で行われる法的な契約である。新郎新婦は自身の自由な意思で結婚に同意する。口頭または紙面での規則に従った拘束的な契約は、イスラームの結婚で不可欠だと考えられており、新郎と新婦の権利と責任の概要を示している[1]。イスラームにおける離婚は様々な形をとることができ、個...

 

Municipality in Castile-La Mancha, Spain Place in Castile-La Mancha, SpainAnquela del Pedregal, SpainAnquela del Pedregal, SpainShow map of Province of GuadalajaraAnquela del Pedregal, SpainShow map of Castilla-La ManchaAnquela del Pedregal, SpainShow map of SpainCoordinates: 40°44′40″N 1°44′8″W / 40.74444°N 1.73556°W / 40.74444; -1.73556Country SpainAutonomous communityCastile-La ManchaProvinceGuadalajaraMunicipalityAnquela del PedregalArea •&#...

British Anglican priest and solicitor (born 1971) The Right ReverendArun AroraBishop of KirkstallArora preaching at St Nicholas' Church, Durham in 2022ChurchChurch of EnglandDioceseAnglican Diocese of LeedsIn office2022–presentOrdersOrdination2007 (deacon)2008 (priest)Consecration15 July 2022by Stephen CottrellPersonal detailsBorn (1971-10-10) 10 October 1971 (age 52)Birmingham, EnglandSpouse Joanne ​(m. 2006)​Children1Education University of Birmingha...

 

Brigjen. Pol. (Purn.) Dra. Hj.Nur AfiahM.H. Wakil Kepala Kepolisian Daerah Sumatera BaratMasa jabatan13 Mei 2015 – 20 Juli 2017PendahuluKombes. Pol. Syamsul HidayatPenggantiBrigjen. Pol. Bayu Wisnumurti Informasi pribadiLahir22 Mei 1960 (umur 64)Makassar, Sulawesi SelatanAlma materSekolah Perwira (1984)Karier militerPihak IndonesiaDinas/cabang Kepolisian Negara Republik IndonesiaMasa dinas1984 - 2018Pangkat Brigadir Jenderal PolisiSatuanSDMSunting kotak info •...

 

Independent TV station in Chicago This article is about the local Chicago television station. For the AM radio station, see WGN (AM). For the cable channel that formerly served as the national feed of WGN-TV, see NewsNation. This article may be too long to read and navigate comfortably. Consider splitting content into sub-articles, condensing it, or adding subheadings. Please discuss this issue on the article's talk page. (February 2024) WGN-TVChicago, IllinoisUnited StatesChannelsDigital: 19...

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يوليو 2023) يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة ...

 

Private school in Kamppi, Helsinki, FinlandDeutsche Schule Helsinki (DSH)LocationKamppi, HelsinkiFinlandInformationTypePrivateEstablished1881PrincipalAnnette Carl [1]Grades1–12Enrollment600 [2]Websitewww.dsh.fi Deutsche Schule Helsinki (DSH; German for German school Helsinki, Finnish: Helsingin Saksalainen koulu, Swedish: Tyska skolan i Helsingfors) is a partly bilingual, German and Finnish-speaking school in Helsinki, the capital of Finland. It is a member of the German Sch...

 

Disambiguazione – Se stai cercando altri significati, vedi Superficie (disambigua). Alcune superfici Piano Ellissoide(Quadrica) Sella(Grafico di una funzione) Iperboloide(Superficie rigata) Elicoide(Superficie minima) Toro Nastro di Möbius(Superficie non orientabile) Superficie di rotazione In matematica, una superficie è una forma geometrica senza spessore, avente solo due dimensioni. Una superficie può essere piatta (come un piano) o curva (come il bordo di una sfera o di un cilindro)...

Bee

Clade of insects This article is about the group of flying insects. For other uses, see Bee (disambiguation). Anthophila redirects here. For the moth genus, see Anthophila (moth). BeesTemporal range: 70–0 Ma PreꞒ Ꞓ O S D C P T J K Pg N Late Cretaceous – Present The sugarbag bee, Tetragonula carbonaria Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Hymenoptera Suborder: Apocrita Infraorder: Aculeata Superfamily: Apoidea ...

 

Pour les articles homonymes, voir Danville. Danville Vue sur la rivière Dan au centre-ville de Danville Administration Pays États-Unis État Virginie Comté Ville indépendante Maire Sherman Saunders Démographie Population 42 590 hab. (2020) Densité 374 hab./km2 Géographie Coordonnées 36° 35′ 14″ nord, 79° 24′ 16″ ouest Superficie 11 380 ha = 113,8 km2 · dont terre 111,5 km2 (97,98 %) · don...