Primitive polynomial (field theory)

In finite field theory, a branch of mathematics, a primitive polynomial is the minimal polynomial of a primitive element of the finite field GF(pm). This means that a polynomial F(X) of degree m with coefficients in GF(p) = Z/pZ is a primitive polynomial if it is monic and has a root α in GF(pm) such that is the entire field GF(pm). This implies that α is a primitive (pm − 1)-root of unity in GF(pm).

Properties

  • Because all minimal polynomials are irreducible, all primitive polynomials are also irreducible.
  • A primitive polynomial must have a non-zero constant term, for otherwise it will be divisible by x. Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root).
  • An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n such that F(x) divides xn − 1 is n = pm − 1.
  • A primitive polynomial of degree m has m different roots in GF(pm), which all have order pm − 1, meaning that any of them generates the multiplicative group of the field.
  • Over GF(p) there are exactly φ(pm − 1) primitive elements and φ(pm − 1) / m primitive polynomials, each of degree m, where φ is Euler's totient function.[1]
  • The algebraic conjugates of a primitive element α in GF(pm) are α, αp, αp2, …, αpm−1 and so the primitive polynomial F(x) has explicit form F(x) = (xα) (xαp) (xαp2) … (xαpm−1). That the coefficients of a polynomial of this form, for any α in GF(pn), not necessarily primitive, lie in GF(p) follows from the property that the polynomial is invariant under application of the Frobenius automorphism to its coefficients (using αpn = α) and from the fact that the fixed field of the Frobenius automorphism is GF(p).

Examples

Over GF(3) the polynomial x2 + 1 is irreducible but not primitive because it divides x4 − 1: its roots generate a cyclic group of order 4, while the multiplicative group of GF(32) is a cyclic group of order 8. The polynomial x2 + 2x + 2, on the other hand, is primitive. Denote one of its roots by α. Then, because the natural numbers less than and relatively prime to 32 − 1 = 8 are 1, 3, 5, and 7, the four primitive roots in GF(32) are α, α3 = 2α + 1, α5 = 2α, and α7 = α + 2. The primitive roots α and α3 are algebraically conjugate. Indeed x2 + 2x + 2 = (xα) (x − (2α + 1)). The remaining primitive roots α5 and α7 = (α5)3 are also algebraically conjugate and produce the second primitive polynomial: x2 + x + 2 = (x − 2α) (x − (α + 2)).

For degree 3, GF(33) has φ(33 − 1) = φ(26) = 12 primitive elements. As each primitive polynomial of degree 3 has three roots, all necessarily primitive, there are 12 / 3 = 4 primitive polynomials of degree 3. One primitive polynomial is x3 + 2x + 1. Denoting one of its roots by γ, the algebraically conjugate elements are γ3 and γ9. The other primitive polynomials are associated with algebraically conjugate sets built on other primitive elements γr with r relatively prime to 26:

Applications

Field element representation

Primitive polynomials can be used to represent the elements of a finite field. If α in GF(pm) is a root of a primitive polynomial F(x), then the nonzero elements of GF(pm) are represented as successive powers of α:

This allows an economical representation in a computer of the nonzero elements of the finite field, by representing an element by the corresponding exponent of This representation makes multiplication easy, as it corresponds to addition of exponents modulo

Pseudo-random bit generation

Primitive polynomials over GF(2), the field with two elements, can be used for pseudorandom bit generation. In fact, every linear-feedback shift register with maximum cycle length (which is 2n − 1, where n is the length of the linear-feedback shift register) may be built from a primitive polynomial.[2]

In general, for a primitive polynomial of degree m over GF(2), this process will generate 2m − 1 pseudo-random bits before repeating the same sequence.

CRC codes

The cyclic redundancy check (CRC) is an error-detection code that operates by interpreting the message bitstring as the coefficients of a polynomial over GF(2) and dividing it by a fixed generator polynomial also over GF(2); see Mathematics of CRC. Primitive polynomials, or multiples of them, are sometimes a good choice for generator polynomials because they can reliably detect two bit errors that occur far apart in the message bitstring, up to a distance of 2n − 1 for a degree n primitive polynomial.

Primitive trinomials

A useful class of primitive polynomials is the primitive trinomials, those having only three nonzero terms: xr + xk + 1. Their simplicity makes for particularly small and fast linear-feedback shift registers.[3] A number of results give techniques for locating and testing primitiveness of trinomials.[4]

For polynomials over GF(2), where 2r − 1 is a Mersenne prime, a polynomial of degree r is primitive if and only if it is irreducible. (Given an irreducible polynomial, it is not primitive only if the period of x is a non-trivial factor of 2r − 1. Primes have no non-trivial factors.) Although the Mersenne Twister pseudo-random number generator does not use a trinomial, it does take advantage of this.

Richard Brent has been tabulating primitive trinomials of this form, such as x74207281 + x30684570 + 1.[5][6] This can be used to create a pseudo-random number generator of the huge period 274207281 − 13×1022338617.

References

  1. ^ Enumerations of primitive polynomials by degree over GF(2), GF(3), GF(5), GF(7), and GF(11) are given by sequences A011260, A027385, A027741, A027743, and A319166 in the Online Encyclopedia of Integer Sequences.
  2. ^ C. Paar, J. Pelzl - Understanding Cryptography: A Textbook for Students and Practitioners
  3. ^ Gentle, James E. (2003). Random number generation and Monte Carlo methods (2 ed.). New York: Springer. p. 39. ISBN 0-387-00178-6. OCLC 51534945.
  4. ^ Zierler, Neal; Brillhart, John (December 1968). "On primitive trinomials (Mod 2)". Information and Control. 13 (6): 541, 548, 553. doi:10.1016/S0019-9958(68)90973-X.
  5. ^ Brent, Richard P. (4 April 2016). "Search for Primitive Trinomials (mod 2)". Retrieved 25 May 2024.
  6. ^ Brent, Richard P.; Zimmermann, Paul (24 May 2016). "Twelve new primitive binary trinomials". arXiv:1605.09213 [math.NT].

Read other articles:

Clifford W. Beers (30 Maret 1876 – 9 Juli 1943) adalah pendiri gerakan kesehatan jiwa setelah dirinya menjadi pasien selama 3 tahun di rumah sakit jiwa di Connecticut.[1] Keluarga Clifford W. Beers lahir pada tahun 1876 di New Haven, Connecticut. Nama ibunya adalah Ida Cooke dan ayahnya bernama Robert Beers. Clifford W. Beers merupakan anak ketiga. Kakak pertamanya wafat saat masih bayi. Sedangkan kakak keduanya juga wafat saat remaja akibat mengalami kejang. Sedangka...

 

Untuk kegunaan lain, lihat Huta Gurgur. Huta Gurgur IIDesaPeta lokasi Desa Huta Gurgur IINegara IndonesiaProvinsiSumatera UtaraKabupatenTobaKecamatanSilaenKode pos22382Kode Kemendagri12.12.03.2004 Luas02,12 km²Jumlah penduduk444 jiwa (2015)Kepadatan209,4 jiwa/km² Huta Gurgur II adalah salah satu desa di Kecamatan Silaen, Kabupaten Toba, Provinsi Sumatera Utara, Indonesia. Pemerintahan Kepala Desa Huta Gurgur II pada tahun 2019 adalah Mangajak Siagian.[1] Desa Huta Gurgur II ter...

 

Kimmy RobertsonRobertson, 2017PekerjaanAktrisTahun aktif1982–sekarang Kimmy Robertson (lahir 27 November 1954) adalah seorang aktris asal Amerika Serikat. Dia terkenal setelah memerankan Lucy Moran di serial televisi Twin Peaks dan turut berakting di film The Last American Virgin.[1] Karier Robertson, 1996 Suara bernada tinggi Robertson telah menghasilkan peran[1] dalam serial animasi seperti Batman: The Animated Series, The Critic, The Tick dan The Simpsons. Suaranya ...

Not to be confused with Earth structure. You can help expand this article with text translated from the corresponding article in Persian. (August 2022) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider a...

 

Defunct flying squadron of the Royal Air Force No. 121 (Eagle) Squadron RAF121 (Eagle) Squadron, RAF, 1940Active1 April 1918 - 17 August 1918 14 May 1941 – 29 September 1942Country United KingdomAllegiance United Kingdom United States (September 1942)Branch Royal Air ForceNickname(s)EagleMotto(s)For liberty[1]InsigniaSquadron Badge heraldryAn Indian warrior's head with head dressSquadron CodesAV (May 1941 - September 1942)Military unit No. 121 Squadron was a Royal Air Force (RA...

 

Pour les articles homonymes, voir Mège. Alexandre Du MègeAlexandre Du Mège vers 1862 (par Delon).BiographieNaissance 5 décembre 1780La HayeDécès 6 juin 1862 (à 81 ans)ToulouseNationalité françaiseActivités Archéologue, numismate, historienAutres informationsMembre de Académie des sciences de Turin (1837)modifier - modifier le code - modifier Wikidata Louis Charles André Alexandre Du Mège ou Dumège, né à La Haye le 5 décembre 1780 et mort à Toulouse le 6 juin 1862, est...

Untuk halte Transjakarta yang dulu bernama Halte Bank Indonesia, lihat Halte Transjakarta Kebon Sirih. Artikel ini bukan mengenai Bank di Indonesia. Bank IndonesiaGedung Bank Indonesia (depan dan dua menara di belakang) di JakartaKantor pusatJakarta, IndonesiaDidirikan1 Juli 1953 (1953-07-01)PemilikPemerintah Republik IndonesiaGubernurPerry WarjiyoNegaraIndonesiaMata uangRupiahIDR (ISO 4217)Cadangan-Pendahulude Javasche BankPengganti-Situs webwww.bi.go.id- Bank Indonesia (BI) adalah...

 

Adult hits radio station in Cleveland, Ohio WHLKCleveland, OhioUnited StatesBroadcast areaGreater ClevelandNortheast OhioFrequency106.5 MHz (HD Radio)Branding106.5 The LakeProgrammingLanguage(s)EnglishFormatAdult hitsSubchannelsHD2: Pride RadioOwnershipOwneriHeartMedia(iHM Licenses, LLC)Sister stationsWAKS (HD2)WARFWGAR-FMWMJIWMMS (HD2)WTAMHistoryFirst air dateMay 4, 1960(63 years ago) (1960-05-04)Former call signsWABQ-FM (1960–1961)WXEN (1961–1977)WZZP (1977–1984)WLTF (1984�...

 

Village in Brandenburg, Germany This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Paretz – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this message) Paretz Palace Paretz is a village in the German state of Brandenburg in the district of Havelland, west of Berlin. Recen...

Yang Utama dan BerbahagiaPierbattista PizzaballaO.F.M.Kardinal, Patriark Latin YerusalemPierbattista Pizzaballa pada tahun 2023.GerejaGereja KatolikKeuskupan agungYerusalemTakhtaYerusalemPenunjukan24 Oktober 2020Awal masa jabatan6 November 2020PendahuluFouad Twal (2016)Diri sendiri (sebagai administrator apostolik)Jabatan lainPrior Besar Ordo Makam KudusImamatTahbisan imam15 September 1990oleh Giacomo BiffiTahbisan uskup10 September 2016oleh Leonardo SandriPeringkatPatriark-Uskup Ag...

 

Pour les articles homonymes, voir 212e régiment. 212e régiment d'artillerie Insigne du 212e régiment d'artillerie de campagne porté (1918). Création 1917 Dissolution 1940 Pays France Branche Armée de terre Type Régiment d'artillerie de campagne (1917)Régiment d'artillerie portée (1918-1919)Régiment d'artillerie lourde divisionnaire (1939-1940) Rôle Artillerie de corps d'arméeArtillerie divisionnaire Ancienne dénomination AC/21 Guerres Première Guerre mondialeSeconde Guerre...

 

Cet article est une ébauche concernant le Zimbabwe. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Les provinces du Zimbabwe constituent la plus grande division territoriale et politique de la République du Zimbabwe. Le pays est divisé en huit provinces, auxquelles s'ajoutent deux villes qui ont le statut de province. Le Zimbabwe demeure un État unitaire, les provinces exercent donc les pouvoirs qui sont ch...

American historian and political scientist (born 1940) Ronald Grigor SunySuny in 2013NationalityUnited States, ArmeniaOccupation(s)Historian, academic, authorTitleWilliam H. Sewell Jr. DistinguishedRelativesLinda Suny Myrsiades (sister), Mesrop Kesdekian (uncle), Gurken (George) Suny (father), Arax Kesdekian Suny (mother), Grikor Mirzaian Suni (grandfather)Academic backgroundAlma materColumbia UniversityDoctoral advisorNina Garsoïan, Marc Raeff, Leopold H. HaimsonAcademic workDisciplineHisto...

 

Solid form of resin For other uses, see Rosin (disambiguation). This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (April 2023) A cake of rosin, made for use by violinists. Rosin (/ˈrɒzɪn/), also called colophony or Greek pitch (Latin: pix graeca), is a solid form of resin obtained from pines and some other plants, mostly conifers, produced by heat...

 

اتحاد غرب آسيا لكرة القدم (بالإنجليزية: West Asian Football Federation)‏، واتحاد غرب آسيا لكرة القدم  اتحاد غرب آسيا لكرة القدم   الرياضة كرة القدم أسس عام 2001 الرئيس الأمير علي بن الحسين المقر عَمَّان  الانتسابات 12 عضواً الموقع الرسمي www.the-waff.com تعديل مصدري - تعديل   اتحاد غرب آس�...

Single-bladed anti-cavalry Chinese sword Zhanmadao (斬馬刀) A zhanmadao horse butchering dao from a Qing dynasty illustration, 1766TypeInfantry anti-cavalry saberPlace of originHan dynasty, ChinaProduction historyVariantsPossible changdao, miaodao, wodao, zanbatōSpecificationsLengthApprox 200 cm (79 in)+Blade lengthApprox 150 cm (59 in)+Blade typeSingle edged, straight for most of the length, curving in the last third.Hilt typeTwo handed The zh...

 

Sir Frederick Gowland HopkinsLahir(1861-06-20)20 Juni 1861Eastbourne, East Sussex, InggrisMeninggal16 Mei 1947(1947-05-16) (umur 85)Cambridge, Cambridgeshire, InggrisKebangsaanBritania RayaDikenal atasPenemuan vitamin, triptofanPenghargaan Nobel Kedokteran (1929)Karier ilmiahBidangBiokimiaInstitusiUniversitas CambridgePembimbing doktoralThomas StevensonMahasiswa doktoralJ.B.S. HaldaneJudah Hirsch QuastelMalcolm Dixon Sir Frederick Gowland Hopkins OM FRS (20 Juni 1861 – 1...

 

German football club Football clubVSK Osterholz ScharmbeckFull nameVerein für Sport und KörperpflegeOsterholz Scharmbeck von 1848 e. V.Founded1848GroundWaldstadionCapacity1,500ChairmanReinhard JordanManagerGünter HermannLeagueBezirksliga Lüneburg 3 (VII)2015–169th Home colours Away colours VSK Osterholz Scharmbeck is a German association football club from the district of Osterholz-Scharmbeck in Lower Saxony. The footballers are the most successful group within a sports club that also i...

High-speed railway line between Osaka and Fukuoka, Japan San'yō ShinkansenN700A Series Shinkansen between Nishi-Akashi and Himeji, February 2021OverviewNative name山陽新幹線Owner JR WestLocaleOsaka, Hyōgo, Okayama, Hiroshima, Yamaguchi and Fukuoka PrefecturesTerminiShin-ŌsakaHakataStations19Color on map     Blue (#24197c)ServiceTypeHigh-speed rail (Shinkansen)SystemShinkansenServicesMizuho, Sakura, Nozomi, Hikari, KodamaOperator(s)JR WestDepot(s)Osaka, Okayama, Hir...

 

American computer scientist David S. TouretzkyDavid S. Touretzky in 2007BornUnited StatesNationalityAmericanAlma materRutgers University, B.A., 1978Carnegie Mellon University, Ph.D., 1984Known forCriticism of Scientology, free speech activismAwardsDistinguished Scientist, Association for Computing Machinery, 2006Scientific careerFieldsArtificial intelligence, computational neuroscienceInstitutionsCarnegie Mellon University David S. Touretzky is a research professor in the Computer S...